A short note on f -biharmonic hypersurfaces

Selcen Y. Perktaş; Bilal E. Acet; Adara M. Blaga

Commentationes Mathematicae Universitatis Carolinae (2020)

  • Volume: 61, Issue: 1, page 119-126
  • ISSN: 0010-2628

Abstract

top
In the present paper we give some properties of f -biharmonic hypersurfaces in real space forms. By using the f -biharmonic equation for a hypersurface of a Riemannian manifold, we characterize the f -biharmonicity of constant mean curvature and totally umbilical hypersurfaces in a Riemannian manifold and, in particular, in a real space form. As an example, we consider f -biharmonic vertical cylinders in S 2 × .

How to cite

top

Perktaş, Selcen Y., Acet, Bilal E., and Blaga, Adara M.. "A short note on $f$-biharmonic hypersurfaces." Commentationes Mathematicae Universitatis Carolinae 61.1 (2020): 119-126. <http://eudml.org/doc/297133>.

@article{Perktaş2020,
abstract = {In the present paper we give some properties of $f$-biharmonic hypersurfaces in real space forms. By using the $f$-biharmonic equation for a hypersurface of a Riemannian manifold, we characterize the $f$-biharmonicity of constant mean curvature and totally umbilical hypersurfaces in a Riemannian manifold and, in particular, in a real space form. As an example, we consider $f$-biharmonic vertical cylinders in $S^\{2\}\times \mathbb \{R\}$.},
author = {Perktaş, Selcen Y., Acet, Bilal E., Blaga, Adara M.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$f$-biharmonic maps; $f$-biharmonic hypersurface},
language = {eng},
number = {1},
pages = {119-126},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A short note on $f$-biharmonic hypersurfaces},
url = {http://eudml.org/doc/297133},
volume = {61},
year = {2020},
}

TY - JOUR
AU - Perktaş, Selcen Y.
AU - Acet, Bilal E.
AU - Blaga, Adara M.
TI - A short note on $f$-biharmonic hypersurfaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 1
SP - 119
EP - 126
AB - In the present paper we give some properties of $f$-biharmonic hypersurfaces in real space forms. By using the $f$-biharmonic equation for a hypersurface of a Riemannian manifold, we characterize the $f$-biharmonicity of constant mean curvature and totally umbilical hypersurfaces in a Riemannian manifold and, in particular, in a real space form. As an example, we consider $f$-biharmonic vertical cylinders in $S^{2}\times \mathbb {R}$.
LA - eng
KW - $f$-biharmonic maps; $f$-biharmonic hypersurface
UR - http://eudml.org/doc/297133
ER -

References

top
  1. Caddeo R., Montaldo S., Oniciuc C., Biharmonic submanifolds of S 3 , Internat. J. Math. 12 (2001), no. 8, 867–876. MR1863283
  2. Chen B.-Y., Some open problems and conjectures on submanifolds of finite type, Soochow J. Math. 17 (1991), no. 2, 169–188. MR1143504
  3. Cieśliński J., Sym A., Wesselius W., 10.1088/0305-4470/26/6/017, J. Phys. A. 26 (1993), no. 6, 1353–1364. MR1212007DOI10.1088/0305-4470/26/6/017
  4. Eells J., Lemaire L., 10.1112/blms/10.1.1, Bull. London Math. Soc. 10 (1978), no. 1, 1–68. Zbl0401.58003MR0495450DOI10.1112/blms/10.1.1
  5. Eells J. Jr., Sampson J. H., 10.2307/2373037, Amer. J. Math. 86 (1964), 109–160. MR0164306DOI10.2307/2373037
  6. Jiang G. Y., 2 -harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7 (1986), no. 2, 130–144 (Chinese); English summary in Chinese Ann. Math. Ser. B 7 (1986), no. 2, 255. MR0858581
  7. Jiang G. Y., 2 -harmonic maps and their first and second variation formulas, Chinese Ann. Math. Ser. A. 7 (1986), no. 4, 389–402 (Chinese); English summary in Chinese Ann. Math. Ser. B 7 (1986), no. 4, 523. MR0886529
  8. Keleş S., Perktaş S. Y., Kiliç E., Biharmonic curves in Lorentzian para-Sasakian manifolds, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 2, 325–344. MR2666434
  9. Li Y., Wang Y., Bubbling location for F -harmonic maps and inhomogeneous Landau-Lifshitz equations, Comment. Math. Helv. 81 (2006), no. 2, 433–448. MR2225633
  10. Lu W.-J., 10.1007/s11425-015-4997-1, Sci. China Math. 58 (2015), no. 7, 1483–1498. MR3353985DOI10.1007/s11425-015-4997-1
  11. Montaldo S., Oniciuc C., A short survey on biharmonic maps between Riemannian manifolds, Rev. Un. Mat. Argentina 47 (2006), no. 2, 1–22. MR2301373
  12. Ou Y.-L., 10.2140/pjm.2010.248.217, Pacific J. Math. 248 (2010), no. 1, 217–232. MR2734173DOI10.2140/pjm.2010.248.217
  13. Ou Y.-L., 10.1016/j.geomphys.2011.12.014, J. Geom. Phys. 62 (2012), no. 4, 751–762. MR2888980DOI10.1016/j.geomphys.2011.12.014
  14. Ou Y.-L., 10.2140/pjm.2014.271.461, Pacific J. Math. 271 (2014), no. 2, 461–477. MR3267537DOI10.2140/pjm.2014.271.461
  15. Ou Y.-L., Tang L., 10.1307/mmj/1347040257, Michigan Math. J. 61 (2012), no. 3, 531–542. MR2975260DOI10.1307/mmj/1347040257
  16. Ou Y.-L., Wang Z.-P., 10.1016/j.geomphys.2011.04.008, J. Geom. Phys. 61 (2011), no. 10, 1845–1853. MR2822453DOI10.1016/j.geomphys.2011.04.008
  17. Perktaş S. Y., Kiliç E., Biharmonic maps between doubly warped product manifolds, Balkan J. Geom. Appl. 15 (2010), no. 2, 159–170. MR2608547
  18. Perktaş S. Y., Kiliç E., Keleş S., Biharmonic hypersurfaces of LP-Sasakian manifolds, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. (N.S.) 57 (2011), no. 2, 387–408. MR2933391
  19. Rimoldi M., Veronelli G., 10.1016/j.difgeo.2013.06.001, Differetial. Geom. Appl. 31 (2013), no. 5, 623–638. MR3093493DOI10.1016/j.difgeo.2013.06.001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.