A short note on -biharmonic hypersurfaces
Selcen Y. Perktaş; Bilal E. Acet; Adara M. Blaga
Commentationes Mathematicae Universitatis Carolinae (2020)
- Volume: 61, Issue: 1, page 119-126
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topPerktaş, Selcen Y., Acet, Bilal E., and Blaga, Adara M.. "A short note on $f$-biharmonic hypersurfaces." Commentationes Mathematicae Universitatis Carolinae 61.1 (2020): 119-126. <http://eudml.org/doc/297133>.
@article{Perktaş2020,
abstract = {In the present paper we give some properties of $f$-biharmonic hypersurfaces in real space forms. By using the $f$-biharmonic equation for a hypersurface of a Riemannian manifold, we characterize the $f$-biharmonicity of constant mean curvature and totally umbilical hypersurfaces in a Riemannian manifold and, in particular, in a real space form. As an example, we consider $f$-biharmonic vertical cylinders in $S^\{2\}\times \mathbb \{R\}$.},
author = {Perktaş, Selcen Y., Acet, Bilal E., Blaga, Adara M.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$f$-biharmonic maps; $f$-biharmonic hypersurface},
language = {eng},
number = {1},
pages = {119-126},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A short note on $f$-biharmonic hypersurfaces},
url = {http://eudml.org/doc/297133},
volume = {61},
year = {2020},
}
TY - JOUR
AU - Perktaş, Selcen Y.
AU - Acet, Bilal E.
AU - Blaga, Adara M.
TI - A short note on $f$-biharmonic hypersurfaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 1
SP - 119
EP - 126
AB - In the present paper we give some properties of $f$-biharmonic hypersurfaces in real space forms. By using the $f$-biharmonic equation for a hypersurface of a Riemannian manifold, we characterize the $f$-biharmonicity of constant mean curvature and totally umbilical hypersurfaces in a Riemannian manifold and, in particular, in a real space form. As an example, we consider $f$-biharmonic vertical cylinders in $S^{2}\times \mathbb {R}$.
LA - eng
KW - $f$-biharmonic maps; $f$-biharmonic hypersurface
UR - http://eudml.org/doc/297133
ER -
References
top- Caddeo R., Montaldo S., Oniciuc C., Biharmonic submanifolds of , Internat. J. Math. 12 (2001), no. 8, 867–876. MR1863283
- Chen B.-Y., Some open problems and conjectures on submanifolds of finite type, Soochow J. Math. 17 (1991), no. 2, 169–188. MR1143504
- Cieśliński J., Sym A., Wesselius W., 10.1088/0305-4470/26/6/017, J. Phys. A. 26 (1993), no. 6, 1353–1364. MR1212007DOI10.1088/0305-4470/26/6/017
- Eells J., Lemaire L., 10.1112/blms/10.1.1, Bull. London Math. Soc. 10 (1978), no. 1, 1–68. Zbl0401.58003MR0495450DOI10.1112/blms/10.1.1
- Eells J. Jr., Sampson J. H., 10.2307/2373037, Amer. J. Math. 86 (1964), 109–160. MR0164306DOI10.2307/2373037
- Jiang G. Y., -harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7 (1986), no. 2, 130–144 (Chinese); English summary in Chinese Ann. Math. Ser. B 7 (1986), no. 2, 255. MR0858581
- Jiang G. Y., -harmonic maps and their first and second variation formulas, Chinese Ann. Math. Ser. A. 7 (1986), no. 4, 389–402 (Chinese); English summary in Chinese Ann. Math. Ser. B 7 (1986), no. 4, 523. MR0886529
- Keleş S., Perktaş S. Y., Kiliç E., Biharmonic curves in Lorentzian para-Sasakian manifolds, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 2, 325–344. MR2666434
- Li Y., Wang Y., Bubbling location for -harmonic maps and inhomogeneous Landau-Lifshitz equations, Comment. Math. Helv. 81 (2006), no. 2, 433–448. MR2225633
- Lu W.-J., 10.1007/s11425-015-4997-1, Sci. China Math. 58 (2015), no. 7, 1483–1498. MR3353985DOI10.1007/s11425-015-4997-1
- Montaldo S., Oniciuc C., A short survey on biharmonic maps between Riemannian manifolds, Rev. Un. Mat. Argentina 47 (2006), no. 2, 1–22. MR2301373
- Ou Y.-L., 10.2140/pjm.2010.248.217, Pacific J. Math. 248 (2010), no. 1, 217–232. MR2734173DOI10.2140/pjm.2010.248.217
- Ou Y.-L., 10.1016/j.geomphys.2011.12.014, J. Geom. Phys. 62 (2012), no. 4, 751–762. MR2888980DOI10.1016/j.geomphys.2011.12.014
- Ou Y.-L., 10.2140/pjm.2014.271.461, Pacific J. Math. 271 (2014), no. 2, 461–477. MR3267537DOI10.2140/pjm.2014.271.461
- Ou Y.-L., Tang L., 10.1307/mmj/1347040257, Michigan Math. J. 61 (2012), no. 3, 531–542. MR2975260DOI10.1307/mmj/1347040257
- Ou Y.-L., Wang Z.-P., 10.1016/j.geomphys.2011.04.008, J. Geom. Phys. 61 (2011), no. 10, 1845–1853. MR2822453DOI10.1016/j.geomphys.2011.04.008
- Perktaş S. Y., Kiliç E., Biharmonic maps between doubly warped product manifolds, Balkan J. Geom. Appl. 15 (2010), no. 2, 159–170. MR2608547
- Perktaş S. Y., Kiliç E., Keleş S., Biharmonic hypersurfaces of LP-Sasakian manifolds, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. (N.S.) 57 (2011), no. 2, 387–408. MR2933391
- Rimoldi M., Veronelli G., 10.1016/j.difgeo.2013.06.001, Differetial. Geom. Appl. 31 (2013), no. 5, 623–638. MR3093493DOI10.1016/j.difgeo.2013.06.001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.