On a question of Schmidt and Summerer concerning -systems
Communications in Mathematics (2020)
- Volume: 28, Issue: 3, page 253-262
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topSchleischitz, Johannes. "On a question of Schmidt and Summerer concerning $3$-systems." Communications in Mathematics 28.3 (2020): 253-262. <http://eudml.org/doc/297153>.
@article{Schleischitz2020,
abstract = {Following a suggestion of W.M. Schmidt and L. Summerer, we construct a proper $3$-system $(P_\{1\},P_\{2\},P_\{3\})$ with the property $\overline\{\varphi \}_\{3\}=1$. In fact, our method generalizes to provide $n$-systems with $\overline\{\varphi \}_\{n\}=1$, for arbitrary $n\ge 3$. We visualize our constructions with graphics. We further present explicit examples of numbers $\xi _\{1\}, \ldots , \xi _\{n-1\}$ that induce the $n$-systems in question.},
author = {Schleischitz, Johannes},
journal = {Communications in Mathematics},
keywords = {parametric geometry of numbers; simultaneous approximation},
language = {eng},
number = {3},
pages = {253-262},
publisher = {University of Ostrava},
title = {On a question of Schmidt and Summerer concerning $3$-systems},
url = {http://eudml.org/doc/297153},
volume = {28},
year = {2020},
}
TY - JOUR
AU - Schleischitz, Johannes
TI - On a question of Schmidt and Summerer concerning $3$-systems
JO - Communications in Mathematics
PY - 2020
PB - University of Ostrava
VL - 28
IS - 3
SP - 253
EP - 262
AB - Following a suggestion of W.M. Schmidt and L. Summerer, we construct a proper $3$-system $(P_{1},P_{2},P_{3})$ with the property $\overline{\varphi }_{3}=1$. In fact, our method generalizes to provide $n$-systems with $\overline{\varphi }_{n}=1$, for arbitrary $n\ge 3$. We visualize our constructions with graphics. We further present explicit examples of numbers $\xi _{1}, \ldots , \xi _{n-1}$ that induce the $n$-systems in question.
LA - eng
KW - parametric geometry of numbers; simultaneous approximation
UR - http://eudml.org/doc/297153
ER -
References
top- Laurent, M., 10.4153/CJM-2009-008-2, Canadian Journal of Mathematics, 61, 1, 2009, 165-189, Cambridge University Press, (2009) MR2488454DOI10.4153/CJM-2009-008-2
- Roy, D., 10.4007/annals.2015.182.2.9, Annals of Mathematics, 2015, 739-786, JSTOR, (2015) MR3418530DOI10.4007/annals.2015.182.2.9
- Roy, D., 10.1112/S0010437X17007126, Compositio Mathematica, 153, 7, 2017, 1512-1546, London Mathematical Society, (2017) MR3705265DOI10.1112/S0010437X17007126
- Schleischitz, J., Diophantine approximation and special Liouville numbers, Communications in Mathematics, 21, 1, 2013, 39-76, (2013) MR3067121
- Schleischitz, J., On approximation constants for Liouville numbers, Glasnik matematički, 50, 2, 2015, 349-361, Hrvatsko matematičko društvo i PMF-Matematički odjel, Sveučilišta u Zagrebu, (2015)
- Schmidt, W.M., Summerer, L., Parametric geometry of numbers and applications, Acta Arithmetica, 140, 2009, 67-91, Instytut Matematyczny Polskiej Akademii Nauk, (2009) Zbl1236.11060
- Schmidt, W.M., Summerer, L., 10.1007/s00605-012-0391-z, Monatshefte für Mathematik, 169, 1, 2013, 51-104, Springer, (2013) MR3016519DOI10.1007/s00605-012-0391-z
- Schmidt, W.M., Summerer, L., Simultaneous approximation to three numbers, Moscow Journal of Combinatorics and Number Theory, 3, 1, 2013, 84-107, (2013) MR3284111
- Schmidt, W.M., Summerer, L., 10.1112/S0025579317000274, Mathematika, 63, 3, 2017, 1136-1151, Wiley Online Library, (2017) MR3731318DOI10.1112/S0025579317000274
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.