Spectral Theory of Singular Hahn Difference Equation of the Sturm-Liouville Type

Bilender P. Allahverdiev; Hüseyin Tuna

Communications in Mathematics (2020)

  • Volume: 28, Issue: 1, page 13-25
  • ISSN: 1804-1388

Abstract

top
In this work, we consider the singular Hahn difference equation of the Sturm-Liouville type. We prove the existence of the spectral function for this equation. We establish Parseval equality and an expansion formula for this equation on a semi-unbounded interval.

How to cite

top

Allahverdiev, Bilender P., and Tuna, Hüseyin. "Spectral Theory of Singular Hahn Difference Equation of the Sturm-Liouville Type." Communications in Mathematics 28.1 (2020): 13-25. <http://eudml.org/doc/297163>.

@article{Allahverdiev2020,
abstract = {In this work, we consider the singular Hahn difference equation of the Sturm-Liouville type. We prove the existence of the spectral function for this equation. We establish Parseval equality and an expansion formula for this equation on a semi-unbounded interval.},
author = {Allahverdiev, Bilender P., Tuna, Hüseyin},
journal = {Communications in Mathematics},
keywords = {Hahn's Sturm-Liouville equation; spectral function; Parseval equality; spectral expansion},
language = {eng},
number = {1},
pages = {13-25},
publisher = {University of Ostrava},
title = {Spectral Theory of Singular Hahn Difference Equation of the Sturm-Liouville Type},
url = {http://eudml.org/doc/297163},
volume = {28},
year = {2020},
}

TY - JOUR
AU - Allahverdiev, Bilender P.
AU - Tuna, Hüseyin
TI - Spectral Theory of Singular Hahn Difference Equation of the Sturm-Liouville Type
JO - Communications in Mathematics
PY - 2020
PB - University of Ostrava
VL - 28
IS - 1
SP - 13
EP - 25
AB - In this work, we consider the singular Hahn difference equation of the Sturm-Liouville type. We prove the existence of the spectral function for this equation. We establish Parseval equality and an expansion formula for this equation on a semi-unbounded interval.
LA - eng
KW - Hahn's Sturm-Liouville equation; spectral function; Parseval equality; spectral expansion
UR - http://eudml.org/doc/297163
ER -

References

top
  1. Aldwoah, K.A., Generalized time scales and associated difference equations, 2009, Cairo University, Ph.D. Thesis. (2009) 
  2. Allahverdiev, B.P., Tuna, H., An expansion theorem for q -Sturm-Liouville operators on the whole line, Turkish J. Math., 42, 3, 2018, 1060-1071, (2018) MR3804971
  3. Allahverdiev, B.P., Tuna, H., 10.3906/mat-1803-79, Turkish J. Math., 42, 5, 2018, 2527-2545, (2018) MR3866169DOI10.3906/mat-1803-79
  4. Allahverdiev, B.P., Tuna, H., Eigenfunction expansion in the singular case for Dirac systems on time scales, Konuralp J. Math., 7, 1, 2019, 128-135, (2019) MR3948622
  5. Allahverdiev, B.P., Tuna, H., 10.3906/mat-1902-16, Turkish J. Math., 43, 2019, 1668-1687, (2019) MR3962557DOI10.3906/mat-1902-16
  6. Allahverdiev, B.P., Tuna, H., Eigenfunction expansion for singular Sturm-Liouville problems with transmission conditions, Electron. J. Differ.Equat., 2019, 3, 2019, 1-10, (2019) MR3904844
  7. Allahverdiev, B.P., Tuna, H., The Parseval equality and expansion formula for singular Hahn-Dirac system, Emerging Applications of Differential Equations and Game Theory, 2020, 209-235, IGI Global, (2020) 
  8. Álvarez-Nodarse, R., 10.1016/j.cam.2005.06.046, J. Comput. Appl. Math., 196, 1, 2006, 320-337, (2006) MR2241592DOI10.1016/j.cam.2005.06.046
  9. Annaby, M.H., Hamza, A.E., Aldwoah, K.A., 10.1007/s10957-012-9987-7, J. Optim. Theory Appl., 154, 2012, 133-153, (2012) MR2931371DOI10.1007/s10957-012-9987-7
  10. Annaby, M.H., Hamza, A.E., Makharesh, S.D., A Sturm-Liouville theory for Hahn difference operator, Frontiers of Orthogonal Polynomials and -Series, 2018, 35-84, World Scientific, Singapore, (2018) MR3791609
  11. Annaby, M.A., Hassan, H.A., 10.1016/j.jmaa.2018.04.016, J. Math. Anal. Appl., 464, 1, 2018, 493-506, (2018) MR3794101DOI10.1016/j.jmaa.2018.04.016
  12. Arvesú, J., 10.1016/j.cam.2009.02.062, J. Comput. Appl. Math., 233, 6, 2010, 1462-1469, Elsevier, doi:10.1016/j.cam.2009.02.062. (2010) MR2559332DOI10.1016/j.cam.2009.02.062
  13. Berezanskii, J.M., Expansions in Eigenfunctions of Selfadjoint Operators, 1968, Amer. Math. Soc., Providence, (1968) Zbl0157.16601MR0222718
  14. Dobrogowska, A., Odzijewicz, A., 10.1016/j.cam.2005.06.009, J. Comput. Appl. Math., 193, 1, 2006, 319-346, (2006) MR2228721DOI10.1016/j.cam.2005.06.009
  15. Guseinov, G.Sh., Eigenfunction expansions for a Sturm-Liouville problem on time scales, Int. J. Difference Equat., 2, 1, 2007, 93-104, (2007) MR2374102
  16. Guseinov, G.Sh., An expansion theorem for a Sturm-Liouville operator on semi-unbounded time scales, Adv. Dyn. Syst. Appl., 3, 1, 2008, 147-160, (2008) MR2547666
  17. Hahn, W., 10.1002/mana.19490020103, Math. Nachr., 2, 1949, 4-34, (1949) MR0030647DOI10.1002/mana.19490020103
  18. Hahn, W., 10.1007/BF01301144, Monatsh. Math., 95, 1983, 19-24, (1983) MR0697345DOI10.1007/BF01301144
  19. Hamza, A.E., Ahmed, S.A., Existence and uniqueness of solutions of Hahn difference equations, Adv. Difference Equat., 316, 2013, 1-15, (2013) MR3337265
  20. Hamza, A.E., Makharesh, S.D., 10.24297/jam.v12i6.3836, J. Adv. Math., 12, 6, 2016, 6335-6345, (2016) DOI10.24297/jam.v12i6.3836
  21. Huseynov, A., Bairamov, E., On expansions in eigenfunctions for second order dynamic equations on time scales, Nonlinear Dyn. Syst. Theory, 9, 1, 2009, 77-88, (2009) MR2510666
  22. Huseynov, A., 10.1016/S0034-4877(10)00026-1, Rep. Math. Phys., 66, 2, 2010, 207-235, (2010) MR2777355DOI10.1016/S0034-4877(10)00026-1
  23. Jackson, F.H., 10.2307/2370183, Amer. J. Math., 32, 1910, 305-314, (1910) MR1506108DOI10.2307/2370183
  24. Jagerman, D.L., Difference Equations with Applications to Queues, 2000, Dekker, New York, (2000) MR1792377
  25. Jordan, C., Calculus of Finite Differences, 3rd edn, 1965, Chelsea, New York, (1965) MR0183987
  26. Kolmogorov, A.N., Fomin, S.V., Introductory Real Analysis. Translated by R.A. Silverman, 1970, Dover Publications, New York, (1970) MR0377445
  27. Kwon, K.H., Lee, D.W., Park, S.B., Yoo, B.H., Hahn class orthogonal polynomials, Kyungpook Math. J., 38, 1998, 259-281, (1998) MR1665852
  28. Lesky, P.A., Eine Charakterisierung der klassischen kontinuierlichen, diskretenund q -Orthgonalpolynome, 2005, Shaker, Aachen, (2005) 
  29. Levinson, N., 10.1215/S0012-7094-51-01806-6, Duke Math. J., 18, 1951, 57-71, (1951) MR0041313DOI10.1215/S0012-7094-51-01806-6
  30. Levitan, B.M., Sargsjan, I.S., Sturm-Liouville and Dirac Operators, 1991, Springer, (1991) MR1136037
  31. Naimark, M.A., Linear Differential Operators, 2nd edn., 1968, 1969, Nauka, Moscow, English translation of 1st edn.. (1969) MR0353061
  32. Petronilho, J., 10.1016/j.cam.2006.05.005, J. Comput. Appl. Math., 205, 2007, 314-324, (2007) MR2324843DOI10.1016/j.cam.2006.05.005
  33. Sitthiwirattham, T., On a nonlocal boundary value problem for nonlinear second-order Hahn difference equation with two different q , ω -derivatives, Adv. Difference Equat., 2016, 1, 2016, Article number 116. (2016) MR3490997
  34. Stone, M.H., 10.1090/S0002-9947-1926-1501372-6, Trans. Amer. Math. Soc., 28, 1926, 695-761, (1926) MR1501372DOI10.1090/S0002-9947-1926-1501372-6
  35. Stone, M.H., Linear Transformations in Hilbert Space and Their Application to Analysis, 1932, Amer. Math. Soc., (1932) MR1451877
  36. Titchmarsh, E.C., Eigenfunction Expansions Associated with Second-Order Differential Equations. Part I. Second Edition, 1962, Clarendon Press, Oxford, (1962) MR0176151
  37. Weyl, H., 10.1007/BF01474161, Math. Annal., 68, 1910, 220-269, (1910) MR1511560DOI10.1007/BF01474161
  38. Yosida, K., 10.1017/S0027763000022820, Nagoya Math. J., 1, 1950, 49-58, (1950) MR0042016DOI10.1017/S0027763000022820
  39. Yosida, K., Lectures on Differential and Integral Equations, 1960, Springer, New York, (1960) MR0118869

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.