Some results on top local cohomology modules with respect to a pair of ideals
Saeed Jahandoust; Reza Naghipour
Mathematica Bohemica (2020)
- Volume: 145, Issue: 4, page 377-386
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topJahandoust, Saeed, and Naghipour, Reza. "Some results on top local cohomology modules with respect to a pair of ideals." Mathematica Bohemica 145.4 (2020): 377-386. <http://eudml.org/doc/297168>.
@article{Jahandoust2020,
abstract = {Let $I$ and $J$ be ideals of a Noetherian local ring $(R,\mathfrak \{m\})$ and let $M$ be a nonzero finitely generated $R$-module. We study the relation between the vanishing of $H_\{I,J\}^\{\dim M\}(M)$ and the comparison of certain ideal topologies. Also, we characterize when the integral closure of an ideal relative to the Noetherian $R$-module $M/JM$ is equal to its integral closure relative to the Artinian $R$-module $H_\{I,J\}^\{\dim M\}(M)$.},
author = {Jahandoust, Saeed, Naghipour, Reza},
journal = {Mathematica Bohemica},
keywords = {Artinian module; integral closure; local cohomology; quasi-unmixed module},
language = {eng},
number = {4},
pages = {377-386},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some results on top local cohomology modules with respect to a pair of ideals},
url = {http://eudml.org/doc/297168},
volume = {145},
year = {2020},
}
TY - JOUR
AU - Jahandoust, Saeed
AU - Naghipour, Reza
TI - Some results on top local cohomology modules with respect to a pair of ideals
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 4
SP - 377
EP - 386
AB - Let $I$ and $J$ be ideals of a Noetherian local ring $(R,\mathfrak {m})$ and let $M$ be a nonzero finitely generated $R$-module. We study the relation between the vanishing of $H_{I,J}^{\dim M}(M)$ and the comparison of certain ideal topologies. Also, we characterize when the integral closure of an ideal relative to the Noetherian $R$-module $M/JM$ is equal to its integral closure relative to the Artinian $R$-module $H_{I,J}^{\dim M}(M)$.
LA - eng
KW - Artinian module; integral closure; local cohomology; quasi-unmixed module
UR - http://eudml.org/doc/297168
ER -
References
top- Brodmann, M. P., 10.2307/2042097, Proc. Am. Math. Soc. 74 (1979), 16-18. (1979) Zbl0395.13008MR0521865DOI10.2307/2042097
- Brodmann, M. P., Sharp, R. Y., 10.1017/CBO9780511629204, Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). (1998) Zbl0903.13006MR1613627DOI10.1017/CBO9780511629204
- Bruns, W., Herzog, J., 10.1017/CBO9780511608681, Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1998). (1998) Zbl0909.13005MR1251956DOI10.1017/CBO9780511608681
- Chu, L., 10.1090/s0002-9939-2010-10471-9, Proc. Am. Math. Soc. 139 (2011), 777-782. (2011) Zbl1210.13018MR2745630DOI10.1090/s0002-9939-2010-10471-9
- Chu, L., Wang, Q., 10.1215/kjm/1248983036, J. Math. Kyoto Univ. 49 (2009), 193-200. (2009) Zbl1174.13024MR2531134DOI10.1215/kjm/1248983036
- Divaani-Aazar, K., 10.1007/s12044-009-0003-6, Proc. Indian Acad. Sci., Math. Sci. 119 (2009), 23-35. (2009) Zbl1179.13012MR2508486DOI10.1007/s12044-009-0003-6
- Katz, D., Jr., L. J. Ratliff, 10.1017/s002776300000057x, Nagoya Math. J. 103 (1986), 39-66. (1986) Zbl0569.13002MR0858471DOI10.1017/s002776300000057x
- Martí-Farré, J., 10.1112/s0025579300011463, Mathematika 42 (1995),182-187. (1995) Zbl0824.13010MR1346683DOI10.1112/s0025579300011463
- Matsumura, H., 10.1017/CBO9781139171762, Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1986). (1986) Zbl0603.13001MR0879273DOI10.1017/CBO9781139171762
- McAdam, S., 10.1016/0022-4049(87)90052-1, J. Pure Appl. Algebra 47 (1987), 283-298. (1987) Zbl0641.13005MR0910425DOI10.1016/0022-4049(87)90052-1
- Merighe, L. C., Pérez, V. H. Jorge, 10.1142/S0219498820500334, (to appear) in J. Algebra Appl (2019). (2019) MR4070490DOI10.1142/S0219498820500334
- Naghipour, R., Sedghi, M., 10.1007/s00013-006-1651-8, Arch. Math. 87 (2006), 303-308. (2006) Zbl1099.13007MR2263476DOI10.1007/s00013-006-1651-8
- Sharp, R. Y., Taherizadeh, A.-J., 10.1112/jlms/s2-37.2.203, J. Lond. Math. Soc., II. Ser. 37 (1988), 203-218. (1988) Zbl0656.13001MR0928518DOI10.1112/jlms/s2-37.2.203
- Sharp, R. Y., Tiraş, Y., Yassi, M., 10.1112/jlms/s2-42.3.385, J. Lond. Math. Soc., II. Ser. 42 (1990), 385-392. (1990) Zbl0733.13001MR1087214DOI10.1112/jlms/s2-42.3.385
- Swanson, I., Huneke, C., Integral Closure of Ideals, Rings, and Modules, London Mathematical Society Lecture Note Series 336. Cambridge University Press, Cambridge (2006). (2006) Zbl1117.13001MR2266432
- Takahashi, R., Yoshino, Y., Yoshizawa, T., 10.1016/j.jpaa.2008.09.008, J. Pure Appl. Algebra 213 (2009), 582-600. (2009) Zbl1160.13013MR2483839DOI10.1016/j.jpaa.2008.09.008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.