Some results on top local cohomology modules with respect to a pair of ideals

Saeed Jahandoust; Reza Naghipour

Mathematica Bohemica (2020)

  • Volume: 145, Issue: 4, page 377-386
  • ISSN: 0862-7959

Abstract

top
Let I and J be ideals of a Noetherian local ring ( R , 𝔪 ) and let M be a nonzero finitely generated R -module. We study the relation between the vanishing of H I , J dim M ( M ) and the comparison of certain ideal topologies. Also, we characterize when the integral closure of an ideal relative to the Noetherian R -module M / J M is equal to its integral closure relative to the Artinian R -module H I , J dim M ( M ) .

How to cite

top

Jahandoust, Saeed, and Naghipour, Reza. "Some results on top local cohomology modules with respect to a pair of ideals." Mathematica Bohemica 145.4 (2020): 377-386. <http://eudml.org/doc/297168>.

@article{Jahandoust2020,
abstract = {Let $I$ and $J$ be ideals of a Noetherian local ring $(R,\mathfrak \{m\})$ and let $M$ be a nonzero finitely generated $R$-module. We study the relation between the vanishing of $H_\{I,J\}^\{\dim M\}(M)$ and the comparison of certain ideal topologies. Also, we characterize when the integral closure of an ideal relative to the Noetherian $R$-module $M/JM$ is equal to its integral closure relative to the Artinian $R$-module $H_\{I,J\}^\{\dim M\}(M)$.},
author = {Jahandoust, Saeed, Naghipour, Reza},
journal = {Mathematica Bohemica},
keywords = {Artinian module; integral closure; local cohomology; quasi-unmixed module},
language = {eng},
number = {4},
pages = {377-386},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some results on top local cohomology modules with respect to a pair of ideals},
url = {http://eudml.org/doc/297168},
volume = {145},
year = {2020},
}

TY - JOUR
AU - Jahandoust, Saeed
AU - Naghipour, Reza
TI - Some results on top local cohomology modules with respect to a pair of ideals
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 4
SP - 377
EP - 386
AB - Let $I$ and $J$ be ideals of a Noetherian local ring $(R,\mathfrak {m})$ and let $M$ be a nonzero finitely generated $R$-module. We study the relation between the vanishing of $H_{I,J}^{\dim M}(M)$ and the comparison of certain ideal topologies. Also, we characterize when the integral closure of an ideal relative to the Noetherian $R$-module $M/JM$ is equal to its integral closure relative to the Artinian $R$-module $H_{I,J}^{\dim M}(M)$.
LA - eng
KW - Artinian module; integral closure; local cohomology; quasi-unmixed module
UR - http://eudml.org/doc/297168
ER -

References

top
  1. Brodmann, M. P., 10.2307/2042097, Proc. Am. Math. Soc. 74 (1979), 16-18. (1979) Zbl0395.13008MR0521865DOI10.2307/2042097
  2. Brodmann, M. P., Sharp, R. Y., 10.1017/CBO9780511629204, Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). (1998) Zbl0903.13006MR1613627DOI10.1017/CBO9780511629204
  3. Bruns, W., Herzog, J., 10.1017/CBO9780511608681, Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1998). (1998) Zbl0909.13005MR1251956DOI10.1017/CBO9780511608681
  4. Chu, L., 10.1090/s0002-9939-2010-10471-9, Proc. Am. Math. Soc. 139 (2011), 777-782. (2011) Zbl1210.13018MR2745630DOI10.1090/s0002-9939-2010-10471-9
  5. Chu, L., Wang, Q., 10.1215/kjm/1248983036, J. Math. Kyoto Univ. 49 (2009), 193-200. (2009) Zbl1174.13024MR2531134DOI10.1215/kjm/1248983036
  6. Divaani-Aazar, K., 10.1007/s12044-009-0003-6, Proc. Indian Acad. Sci., Math. Sci. 119 (2009), 23-35. (2009) Zbl1179.13012MR2508486DOI10.1007/s12044-009-0003-6
  7. Katz, D., Jr., L. J. Ratliff, 10.1017/s002776300000057x, Nagoya Math. J. 103 (1986), 39-66. (1986) Zbl0569.13002MR0858471DOI10.1017/s002776300000057x
  8. Martí-Farré, J., 10.1112/s0025579300011463, Mathematika 42 (1995),182-187. (1995) Zbl0824.13010MR1346683DOI10.1112/s0025579300011463
  9. Matsumura, H., 10.1017/CBO9781139171762, Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1986). (1986) Zbl0603.13001MR0879273DOI10.1017/CBO9781139171762
  10. McAdam, S., 10.1016/0022-4049(87)90052-1, J. Pure Appl. Algebra 47 (1987), 283-298. (1987) Zbl0641.13005MR0910425DOI10.1016/0022-4049(87)90052-1
  11. Merighe, L. C., Pérez, V. H. Jorge, 10.1142/S0219498820500334, (to appear) in J. Algebra Appl (2019). (2019) MR4070490DOI10.1142/S0219498820500334
  12. Naghipour, R., Sedghi, M., 10.1007/s00013-006-1651-8, Arch. Math. 87 (2006), 303-308. (2006) Zbl1099.13007MR2263476DOI10.1007/s00013-006-1651-8
  13. Sharp, R. Y., Taherizadeh, A.-J., 10.1112/jlms/s2-37.2.203, J. Lond. Math. Soc., II. Ser. 37 (1988), 203-218. (1988) Zbl0656.13001MR0928518DOI10.1112/jlms/s2-37.2.203
  14. Sharp, R. Y., Tiraş, Y., Yassi, M., 10.1112/jlms/s2-42.3.385, J. Lond. Math. Soc., II. Ser. 42 (1990), 385-392. (1990) Zbl0733.13001MR1087214DOI10.1112/jlms/s2-42.3.385
  15. Swanson, I., Huneke, C., Integral Closure of Ideals, Rings, and Modules, London Mathematical Society Lecture Note Series 336. Cambridge University Press, Cambridge (2006). (2006) Zbl1117.13001MR2266432
  16. Takahashi, R., Yoshino, Y., Yoshizawa, T., 10.1016/j.jpaa.2008.09.008, J. Pure Appl. Algebra 213 (2009), 582-600. (2009) Zbl1160.13013MR2483839DOI10.1016/j.jpaa.2008.09.008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.