Fault estimation for time-varying systems with Round-Robin protocol

Haijing Fu; Hongli Dong; Jinbo Song; Nan Hou; Gongfa Li

Kybernetika (2020)

  • Volume: 56, Issue: 1, page 107-126
  • ISSN: 0023-5954

Abstract

top
This paper is concerned with the design problem of finite-horizon H fault estimator for a class of nonlinear time-varying systems with Round-Robin protocol scheduling. The faults are assumed to occur in a random way governed by a Bernoulli distributed white sequence. The communication between the sensor nodes and fault estimators is implemented via a shared network. In order to prevent the data from collisions, a Round-Robin protocol is utilized to orchestrate the transmission of sensor nodes. By means of the stochastic analysis technique and the completing squares method, a necessary and sufficient condition is established for the existence of fault estimator ensuring that the estimation error dynamics satisfies the prescribed H constraint. The time-varying parameters of fault estimator are obtained by recursively solving a set of coupled backward Riccati difference equations. A simulation example is given to demonstrate the effectiveness of the proposed design scheme of the fault estimator.

How to cite

top

Fu, Haijing, et al. "Fault estimation for time-varying systems with Round-Robin protocol." Kybernetika 56.1 (2020): 107-126. <http://eudml.org/doc/297177>.

@article{Fu2020,
abstract = {This paper is concerned with the design problem of finite-horizon $H_\infty $ fault estimator for a class of nonlinear time-varying systems with Round-Robin protocol scheduling. The faults are assumed to occur in a random way governed by a Bernoulli distributed white sequence. The communication between the sensor nodes and fault estimators is implemented via a shared network. In order to prevent the data from collisions, a Round-Robin protocol is utilized to orchestrate the transmission of sensor nodes. By means of the stochastic analysis technique and the completing squares method, a necessary and sufficient condition is established for the existence of fault estimator ensuring that the estimation error dynamics satisfies the prescribed $H_\infty $ constraint. The time-varying parameters of fault estimator are obtained by recursively solving a set of coupled backward Riccati difference equations. A simulation example is given to demonstrate the effectiveness of the proposed design scheme of the fault estimator.},
author = {Fu, Haijing, Dong, Hongli, Song, Jinbo, Hou, Nan, Li, Gongfa},
journal = {Kybernetika},
keywords = {fault estimation; Round--Robin protocol; randomly occurring faults; Riccati difference equations; nonlinear time-varying system},
language = {eng},
number = {1},
pages = {107-126},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Fault estimation for time-varying systems with Round-Robin protocol},
url = {http://eudml.org/doc/297177},
volume = {56},
year = {2020},
}

TY - JOUR
AU - Fu, Haijing
AU - Dong, Hongli
AU - Song, Jinbo
AU - Hou, Nan
AU - Li, Gongfa
TI - Fault estimation for time-varying systems with Round-Robin protocol
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 1
SP - 107
EP - 126
AB - This paper is concerned with the design problem of finite-horizon $H_\infty $ fault estimator for a class of nonlinear time-varying systems with Round-Robin protocol scheduling. The faults are assumed to occur in a random way governed by a Bernoulli distributed white sequence. The communication between the sensor nodes and fault estimators is implemented via a shared network. In order to prevent the data from collisions, a Round-Robin protocol is utilized to orchestrate the transmission of sensor nodes. By means of the stochastic analysis technique and the completing squares method, a necessary and sufficient condition is established for the existence of fault estimator ensuring that the estimation error dynamics satisfies the prescribed $H_\infty $ constraint. The time-varying parameters of fault estimator are obtained by recursively solving a set of coupled backward Riccati difference equations. A simulation example is given to demonstrate the effectiveness of the proposed design scheme of the fault estimator.
LA - eng
KW - fault estimation; Round--Robin protocol; randomly occurring faults; Riccati difference equations; nonlinear time-varying system
UR - http://eudml.org/doc/297177
ER -

References

top
  1. Bu, X., Dong, H., Han, F., Hou, N., Li, G., 10.1016/j.neucom.2018.07.087, Neurocomputing 346 (2019), 58-64. MR4044317DOI10.1016/j.neucom.2018.07.087
  2. Chen, W., Ding, D., Ge, X., Han, Q.-L., Wei, G., 10.1109/tcyb.2018.2885567, IEEE Trans. Cybernetics (2018), 1-11. DOI10.1109/tcyb.2018.2885567
  3. Ding, D., Han, Q.-L., Wang, Z., Ge, X., 10.1109/tii.2019.2905295, IEEE Trans. Industr. Inform. 15 (2019), 2483-2499. DOI10.1109/tii.2019.2905295
  4. Ding, D., Wang, Z., Han, Q.-L., 10.1109/tac.2019.2934389, IEEE Trans. Automat. Control (2019), 1. DOI10.1109/tac.2019.2934389
  5. Ding, D., Wang, Z., Han, Q.-L., Wei, G., 10.1109/tcyb.2018.2827037, IEEE Trans. Cybernetics 49 (2019), 2372-2384. DOI10.1109/tcyb.2018.2827037
  6. Dong, H., Hou, N., Wang, Z., 10.1016/j.automatica.2019.108734, Automatica 112 (2020), 108734. MR4043012DOI10.1016/j.automatica.2019.108734
  7. Dong, H., Hou, N., Wang, Z., Liu, H., 10.1002/rnc.4382, Int. J. Robust Nonlinear Control 29 (2019), 117-134. MR3886112DOI10.1002/rnc.4382
  8. Dong, H., Wang, Z., Ding, S. X., Gao, H., 10.1016/j.automatica.2014.10.026, Automatica 50 (2014), 3182-3189. MR3284153DOI10.1016/j.automatica.2014.10.026
  9. Dong, H., Wang, Z., Ding, S. X., Gao, H., 10.1109/tac.2015.2437526, IEEE Trans. Automat. Control 61 (2015), 479-484. MR3454754DOI10.1109/tac.2015.2437526
  10. Gao, M., Yang, S., Sheng, L., Zhou, D., 10.1016/j.neucom.2018.08.087, Neurocomputing 346 (2019), 65-72. DOI10.1016/j.neucom.2018.08.087
  11. Ge, X., Han, Q.-L., Wang, Z., 10.1109/tcyb.2017.2789296, IEEE Trans. Cybernetics 49 (2019), 1148-1159. DOI10.1109/tcyb.2017.2789296
  12. Ge, X., Han, Q.-L., Wang, Z., 10.1109/tcyb.2017.2769722, IEEE Trans. Cybernetics 49 (2019), 171-183. DOI10.1109/tcyb.2017.2769722
  13. Hou, N., Wang, Z., Ho, D. W. C., Dong, H., 10.1109/TCYB.2019.2918760, IEEE Trans. Cybernetics (2019), 1-10. DOI10.1109/TCYB.2019.2918760
  14. Hu, J., Wang, Z., Gao, H., 10.1016/j.automatica.2018.07.027, Automatica 97 (2018), 150-160. MR3857456DOI10.1016/j.automatica.2018.07.027
  15. Li, J., Dong, H., Wang, Z., Bu, X., 10.1109/tnnls.2019.2944552, IEEE Trans. Neural Networks Learn. Systems (2019), 1-7. DOI10.1109/tnnls.2019.2944552
  16. Li, J., Dong, H., Wang, Z., Hou, N., Alsaadi, F. E., 10.1007/s00521-017-2980-1, Neural Computing Appl. 31 (2019), 65-78. DOI10.1007/s00521-017-2980-1
  17. Li, Q., Shen, B., Wang, Z., Huan, T., Luo, J., 10.1109/tcyb.2018.2818941, IEEE Trans. Cybernetics 49 (2019), 1979-1986. MR3891660DOI10.1109/tcyb.2018.2818941
  18. Li, Y., Karimi, H. R., Zhang, Q., Zhao, D., Li, Y., 10.1109/tcsi.2017.2763625, IEEE Trans. Circuits and Systems I: Regular Papers 65 (2018), 1707-1716. DOI10.1109/tcsi.2017.2763625
  19. Li, Z., Shu, H., Kan, X., 10.1109/tcsi.2017.2763625, Int. J. Systems Sci. 45 (2014), 1416-1426. MR3219744DOI10.1109/tcsi.2017.2763625
  20. Liu, Q., Wang, Z., He, X., Zhou, D., 10.1007/978-3-030-00157-5_6, IEEE Trans. Automat. Control 64 (2018), 99-115. MR3936432DOI10.1007/978-3-030-00157-5_6
  21. Liu, Q., Wang, Z., He, X., Zhou, D., 10.1016/j.automatica.2018.03.031, Automatica 94 (2018), 458-464. MR3810997DOI10.1016/j.automatica.2018.03.031
  22. Liu, Y., Wang, Z., Zhou, D., 10.1016/j.ifacol.2018.09.527, IFAC-PapersOnLine 51 (2018), 46-51. DOI10.1016/j.ifacol.2018.09.527
  23. Penrose, R., Todd, J. A., 10.1017/s0305004100030929, Math. Proc. Cambridge Philosoph. Soc. 52 (1956), 17-19. MR0074092DOI10.1017/s0305004100030929
  24. Shen, B., Wang, Z., Wang, D., Luo, J., 10.1016/j.automatica.2018.11.010, Automatica 100 (2019), 144-152. MR3881144DOI10.1016/j.automatica.2018.11.010
  25. Shen, Y., Wang, Z., Shen, B., Alsaadi, F. E., Alsaadi, F. E., 10.1016/j.inffus.2019.08.013, Inform. Fusion 55 (2020), 281-291. DOI10.1016/j.inffus.2019.08.013
  26. Sheng, L., Niu, Y., Zou, L., Liu, Y., Alsaadi, F. E., 10.1016/j.jfranklin.2018.07.026, J. Franklin Inst. 355 (2018), 7417-7442. MR3857394DOI10.1016/j.jfranklin.2018.07.026
  27. Sheng, L., Wang, Z., Zou, L., Alsaadi, F. E., 10.1109/tnnls.2016.2580601, IEEE Trans. Neural Networks Learn. Systems 28 (2017), 2382-2394. MR3709755DOI10.1109/tnnls.2016.2580601
  28. Vesely, V., Ernek, M., 10.14736/kyb-2018-3-0593, Kybernetika 54 (2018), 593-609. MR3844834DOI10.14736/kyb-2018-3-0593
  29. Wan, X., Wang, Z., Wu, M., Liu, X., 10.1109/tnb.2018.2797124, IEEE Trans. NanoBioscience 17 (2018), 145-154. DOI10.1109/tnb.2018.2797124
  30. Wu, J., Weng, Z., Tian, Z., Shi, S., Fault tolerant control for uncertain time-delay systems based on sliding mode control., Kybernetika 44 (2008), 617-632. MR2479308
  31. Zhang, X.-M., Han, Q.-L., 10.1109/tcyb.2015.2487420, IEEE Trans. Cybernet. 46 (2015), 2745-2757. DOI10.1109/tcyb.2015.2487420
  32. Zhang, X.-M., Han, Q.-L., Ge, X., Ding, D., Ding, L., Yue, D., Peng, C., 10.1109/jas.2019.1911651, IEEE/CAA J. Automat. Sinica (2019), 1-17. MR3748030DOI10.1109/jas.2019.1911651
  33. Zhu, J.-W., Yang, G.-H., Wang, H., Wang, F., 10.1109/tac.2015.2491898, IEEE Trans. Automat. Control 61 (2016), 2518-2524. MR3545070DOI10.1109/tac.2015.2491898
  34. Zou, L., Wang, Z., Gao, H., 10.1016/j.automatica.2016.07.025, Automatica 74 (2016), 341-348. MR3569400DOI10.1016/j.automatica.2016.07.025
  35. Zou, L., Wang, Z., Gao, H., Liu, X., 10.1109/tnnls.2016.2524621, IEEE Trans. Neural Networks Learn. Systems 28 (2017), 1139-1151. MR3914858DOI10.1109/tnnls.2016.2524621
  36. Zou, L., Wang, Z., Han, Q.-L., Zhou, D. H., 10.1109/tac.2017.2713353, IEEE Trans. Automat. Control 62 (2017), 6582-6588. MR3743543DOI10.1109/tac.2017.2713353
  37. Zou, L., Wang, Z., Zhou, D., 10.1016/j.ifacol.2018.09.595, IFAC-PapersOnLine 51 (2018), 314-319. MR3912120DOI10.1016/j.ifacol.2018.09.595
  38. Zuo, Z., Han, Q.-L., Ning, B., Ge, X., Zhang, X.-M., 10.1109/tii.2018.2817248, IEEE Trans. Industr. Inform. 14(2018), 2322-2334. MR3932129DOI10.1109/tii.2018.2817248

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.