On hybrid consensus-based extended Kalman filtering with random link failures over sensor networks

Pailiang Zhu; Guoliang Wei; Jiajia Li

Kybernetika (2020)

  • Volume: 56, Issue: 1, page 189-212
  • ISSN: 0023-5954

Abstract

top
This paper is concerned with the distributed filtering problem for nonlinear time-varying systems over wireless sensor networks under random link failures. To achieve consensus estimation, each sensor node is allowed to communicate with its neighboring nodes according to a prescribed communication topology. Firstly, a new hybrid consensus-based filtering algorithm under random link failures, which affect the information exchange between sensors and are modeled by a set of independent Bernoulli processes, is designed via redefining the interaction weights. Second, a novel observability condition, called parameterized jointly uniform observability, is proposed to ensure the stochastic boundedness of the error covariances of the hybrid consensus-based filtering algorithm. Finally, an example is given to demonstrate the effectiveness of the derived theoretical results.

How to cite

top

Zhu, Pailiang, Wei, Guoliang, and Li, Jiajia. "On hybrid consensus-based extended Kalman filtering with random link failures over sensor networks." Kybernetika 56.1 (2020): 189-212. <http://eudml.org/doc/297181>.

@article{Zhu2020,
abstract = {This paper is concerned with the distributed filtering problem for nonlinear time-varying systems over wireless sensor networks under random link failures. To achieve consensus estimation, each sensor node is allowed to communicate with its neighboring nodes according to a prescribed communication topology. Firstly, a new hybrid consensus-based filtering algorithm under random link failures, which affect the information exchange between sensors and are modeled by a set of independent Bernoulli processes, is designed via redefining the interaction weights. Second, a novel observability condition, called parameterized jointly uniform observability, is proposed to ensure the stochastic boundedness of the error covariances of the hybrid consensus-based filtering algorithm. Finally, an example is given to demonstrate the effectiveness of the derived theoretical results.},
author = {Zhu, Pailiang, Wei, Guoliang, Li, Jiajia},
journal = {Kybernetika},
keywords = {extended Kalman filter; hybrid consensus filter; sensor network; distributed state estimation; random link failure},
language = {eng},
number = {1},
pages = {189-212},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On hybrid consensus-based extended Kalman filtering with random link failures over sensor networks},
url = {http://eudml.org/doc/297181},
volume = {56},
year = {2020},
}

TY - JOUR
AU - Zhu, Pailiang
AU - Wei, Guoliang
AU - Li, Jiajia
TI - On hybrid consensus-based extended Kalman filtering with random link failures over sensor networks
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 1
SP - 189
EP - 212
AB - This paper is concerned with the distributed filtering problem for nonlinear time-varying systems over wireless sensor networks under random link failures. To achieve consensus estimation, each sensor node is allowed to communicate with its neighboring nodes according to a prescribed communication topology. Firstly, a new hybrid consensus-based filtering algorithm under random link failures, which affect the information exchange between sensors and are modeled by a set of independent Bernoulli processes, is designed via redefining the interaction weights. Second, a novel observability condition, called parameterized jointly uniform observability, is proposed to ensure the stochastic boundedness of the error covariances of the hybrid consensus-based filtering algorithm. Finally, an example is given to demonstrate the effectiveness of the derived theoretical results.
LA - eng
KW - extended Kalman filter; hybrid consensus filter; sensor network; distributed state estimation; random link failure
UR - http://eudml.org/doc/297181
ER -

References

top
  1. Battistelli, G., Chisci, L., 10.1016/j.automatica.2013.11.042, Automatica 50 (2014), 3, 707-718. MR3173970DOI10.1016/j.automatica.2013.11.042
  2. Battistelli, G., Chisci, L., Fantacci, C., 10.1109/lsp.2014.2316258, IEEE Signal Process. Lett. 21 (2014), 7, 787-791. DOI10.1109/lsp.2014.2316258
  3. Battistelli, G., Chisci, L., Mugnai, G., Farina, A., Graziano, A., 10.1109/tac.2014.2357135, IEEE Trans. Automat. Control 60 (2015), 5, 1410-1415. MR3351426DOI10.1109/tac.2014.2357135
  4. Battistelli, G., Chisci, L., Stefano, M., Francesco, P., 10.3182/20110828-6-it-1002.01998, In: Proc. 18th IFAC World Congress 2011, 12477-12482. DOI10.3182/20110828-6-it-1002.01998
  5. Boutayeb, M., Rafaralahy, H., Darouach, M., 10.1109/9.566674, IEEE Trans. Automat. Control 42 (1997), 4, 581-586. MR1442599DOI10.1109/9.566674
  6. Chen, W., Ding, D., Dong, H., Wei, G., 10.1109/tsmc.2019.2905253, IEEE Trans. Systems Man Cybernet.: Systems 49 (2019), 8, 1688-1697. DOI10.1109/tsmc.2019.2905253
  7. Chen, W., Ding, D., Ge, X., Han, Q.-L., Wei, G., 10.1109/tcyb.2018.2885567, IEEE Trans. Cybernet. (2019), 1-11. DOI10.1109/tcyb.2018.2885567
  8. Ding, D., Han, Q.-L., Wang, Z., Ge, X., 10.1109/tii.2019.2905295, IEEE Trans. Industr. Inform. 17 (2019), 5, 2483-2499. DOI10.1109/tii.2019.2905295
  9. Ding, D., Wang, Z., Han, Q.-L., A set-membership approach to event-triggered filtering for general nonlinear systems over sensor networks., IEEE Trans. Automat. Control (2019), 1-1. 
  10. Dong, H., Wang, Z., Ding, S. X., Gao, H., 10.1016/j.automatica.2014.10.026, Automatica 50 (2014), 12, 3182-3189. MR3284153DOI10.1016/j.automatica.2014.10.026
  11. Dong, H., Wang, Z., Ho, D. W. C., Gao, H., 10.1109/tsp.2010.2042489, IEEE Trans. Signal Process. 58 (2010), 5, 2534-2543. MR2789403DOI10.1109/tsp.2010.2042489
  12. Ge, X., Han, Q.-L., 10.1109/tcyb.2016.2570860, IEEE Trans. Cybernet. 47 (2017), 8, 1807-1819. DOI10.1109/tcyb.2016.2570860
  13. Ge, X., Han, Q.-L., Wang, Z., 10.1109/tcyb.2017.2769722, IEEE Trans. Cybernet. 49 (2019), 1, 171-183. DOI10.1109/tcyb.2017.2769722
  14. Ge, X., Han, Q.-L., Wang, Z., 10.1109/tcyb.2017.2789296, IEEE Trans. Cybernet. 49 (2019), 4, 1148-1159. DOI10.1109/tcyb.2017.2789296
  15. Ge, X., Han, Q.-L., Zhang, X.-M., Ding, L., Yang, F., 10.1109/TCYB.2019.2917179 DOI10.1109/TCYB.2019.2917179
  16. Ge, X., Han, Q.-L., Zhong, M., Zhang, X.-M., 10.1016/j.automatica.2019.108557, Automatica 109 (2019), 108557. MR3998774DOI10.1016/j.automatica.2019.108557
  17. Hlinka, O., Sluciak, O., Hlawatsch, F., Djuric, P. M., Rupp, M., 10.1109/tsp.2012.2196697, IEEE Transs. Signal Process. 60 (2012), 8, 4334-4349. MR2960499DOI10.1109/tsp.2012.2196697
  18. Julier, S. J., Uhlmann, J. K., 10.1109/acc.1997.609105, In: Proc. American Control Conference, Albuquerque 1997, pp. 2369-2373. DOI10.1109/acc.1997.609105
  19. Kamal, A. T., Farrell, J. A., Roy-Chowdhury, A. K., 10.1109/tac.2013.2277621, IEEE Trans. Automat. Control 58 (2013), 12, 3112-3125. MR3152272DOI10.1109/tac.2013.2277621
  20. Kluge, S., Reif, K., Brokate, M., 10.1109/tac.2009.2037467, IEEE Trans. Automat. Control 55 (2010), 2, 514-518. MR2604434DOI10.1109/tac.2009.2037467
  21. Li, W., Wei, G., Ding, D., Liu, Y., Alsaadi, F. E., 10.1109/tsmc.2016.2598845, IEEE Trans. Systems Man Cybernet.: Systems 48 (2018), 2, 309-314. DOI10.1109/tsmc.2016.2598845
  22. Liang, J., Wang, Z., Hayat, T., Alsaedi, A., 10.1016/j.ins.2015.11.020, Information Sciences 370 (2016), 708-724. DOI10.1016/j.ins.2015.11.020
  23. Lin, X., Boyd, S., Lall, S., 10.1109/ipsn.2005.1440896, In: Proc. 4th International Symposium on Information Processing in Sensor Networks 25 (2005), 63-70. DOI10.1109/ipsn.2005.1440896
  24. Liu, Q., Wang, Z., He, X., Ghinea, G., Alsaadi, F. E., 10.1109/tsp.2016.2634541, IEEE Trans. Signal Process. 65 (2017), 5, 1300-1309. MR3597280DOI10.1109/tsp.2016.2634541
  25. Liu, Q., Wang, Z., He, X., Zhou, D., 10.1109/tac.2017.2774601, IEEE Trans. Automat. Control 63 (2018), 8, 2701-2708. MR3846001DOI10.1109/tac.2017.2774601
  26. Ma, L., Wang, Z., Lam, H. K., Kyriakoulis, N., 10.1109/tcyb.2016.2582081, IEEE Trans. Cybernet. 47 (2017), 11, 3772-3783. DOI10.1109/tcyb.2016.2582081
  27. Olfati-Saber, R., 10.1109/cdc.2005.1583486, In: Proc. Conference on Decision and Control, and the European Control Conference, Seville 2005, pp. 8179-8184. DOI10.1109/cdc.2005.1583486
  28. Olfati-Saber, R., Murray, R. M., 10.1109/tac.2004.834113, IEEE Trans. Automat. Control 49 (2004), 9, 1520-1533. MR2086916DOI10.1109/tac.2004.834113
  29. Olfati-Saber, R., Fax, J. A., Murray, R. M., 10.1109/jproc.2006.887293, Proc. IEEE 95 (2007), 1, 215-233. DOI10.1109/jproc.2006.887293
  30. Paradis, L., Han, Q., 10.1007/s10922-007-9062-0, J. Network Systems Mgt 5 (2007), 2, 171-190. DOI10.1007/s10922-007-9062-0
  31. Rapp, K., Nyman, P. O., 10.1016/s1474-6670(17)31420-9, IFAC Proc. 37 (2004), 13, 1377-1382. DOI10.1016/s1474-6670(17)31420-9
  32. Reif, K., Unbehauen, R., 10.1109/78.774779, IEEE Trans. Signal Process. 47 (1999), 8, 2324-2328. MR1732532DOI10.1109/78.774779
  33. al, K. Reif et, 10.1109/9.754809, IEEE Trans. Automat. Control 44 (1999), 4, 714-728. MR1684426DOI10.1109/9.754809
  34. Ren, W., Beard, R. W., Atkins, E. M., 10.1109/mcs.2007.338264, IEEE Control Systems Magazine 27 (2007), 11, 71-82. MR3064077DOI10.1109/mcs.2007.338264
  35. Simonetto, A., Keviczky, T., Babuska, R., 10.1109/robot.2010.5509143, In: IEEE International Conference Robotics and Automation, Alaska 2010, pp. 3026-3031. DOI10.1109/robot.2010.5509143
  36. Ugrinovskii, V., 10.1109/tac.2013.2256675, IEEE Trans. Automat. Control 58 (2013), 10, 2659-2664. MR3106075DOI10.1109/tac.2013.2256675
  37. Wei, G., Li, W., Ding, D., Liu, Y., 10.1109/tsmc.2018.2855741, IEEE Trans. Systems Man Cybernet.: Systems (2018), 1-12. DOI10.1109/tsmc.2018.2855741
  38. Willner, D., Chang, C., Dunn, K., 10.1109/cdc.1976.267794, In: IEEE Conference on Decision and Control Including the Symposium on Adaptive Processes 1976, pp. 570-574. DOI10.1109/cdc.1976.267794
  39. Xiao, S., Han, Q.-L., Ge, X., Zhang, Y., 10.1109/tcyb.2019.2900478, IEEE Trans. Cybernet. 50 (2019), 3, 1220-1229. DOI10.1109/tcyb.2019.2900478
  40. Yuan, Y., Yuan, H., Guo, L., Yang, H., Sun, S., 10.1109/tii.2016.2542208, IEEE Tran. Industr. Inform. 12 (2016), 2, 1786-1794. DOI10.1109/tii.2016.2542208
  41. Zhang, X.-M., Han, Q.-L., 10.1109/tcyb.2015.2487420, IEEE Trans. Cybernet. 46 (2016), 12, 2745-2757. DOI10.1109/tcyb.2015.2487420
  42. Zhang, X.-M., Han, Q.-L., Ge, X., Ding, D., Ding, L., Yue, D., Peng, C., 10.1109/JAS.2019.1911651, IEEE/CAA J. Automat. Sinica. (2019), 1-17. MR3748030DOI10.1109/JAS.2019.1911651
  43. Zuo, Z., Han, Q.-L., Ning, B., Ge, X., Zhang, X.-M., 10.1109/tii.2018.2817248, IEEE Trans. Industr. Inform. 14 (2018), 6, 2322-2334. MR3932129DOI10.1109/tii.2018.2817248
  44. Zou, L., Wang, Z., Han, Q.-L., Zhou, D. H., 10.1109/tac.2017.2713353, IEEE Trans. Automat. Control 62 (2017), 12, 6582-6588. MR3743543DOI10.1109/tac.2017.2713353
  45. Zou, L., Wang, Z., Han, Q.-L., Zhou, D. H., 10.1109/tac.2018.2833154, IEEE Trans. Automat. Control 60 (2019), 2, 720-727. MR3912120DOI10.1109/tac.2018.2833154

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.