Relative weak derived functors
Commentationes Mathematicae Universitatis Carolinae (2020)
- Volume: 61, Issue: 1, page 35-50
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topPrabakaran, Panneerselvam. "Relative weak derived functors." Commentationes Mathematicae Universitatis Carolinae 61.1 (2020): 35-50. <http://eudml.org/doc/297191>.
@article{Prabakaran2020,
abstract = {Let $R$ be a ring, $n$ a fixed non-negative integer, $\{\mathcal \{W I\}\}$ the class of all left $R$-modules with weak injective dimension at most $n$, and $\{\mathcal \{W F\}\}$ the class of all right $R$-modules with weak flat dimension at most $n$. Using left (right) $\{\mathcal \{W I\}\}$-resolutions and the left derived functors of Hom we study the weak injective dimensions of modules and rings. Also we prove that $- \otimes -$ is right balanced on $\{\mathcal \{M\}\}_R \times \{_R\{\mathcal \{M\}\}\}$ by $\{\mathcal \{W F\}\} \times \{\mathcal \{W I\}\}$, and investigate the global right $\{\mathcal \{W I\}\}$-dimension of $_R\{\mathcal \{M\}\}$ by right derived functors of $\otimes $.},
author = {Prabakaran, Panneerselvam},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {weak injective module; weak flat module; weak injective dimension; weak flat dimension},
language = {eng},
number = {1},
pages = {35-50},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Relative weak derived functors},
url = {http://eudml.org/doc/297191},
volume = {61},
year = {2020},
}
TY - JOUR
AU - Prabakaran, Panneerselvam
TI - Relative weak derived functors
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 1
SP - 35
EP - 50
AB - Let $R$ be a ring, $n$ a fixed non-negative integer, ${\mathcal {W I}}$ the class of all left $R$-modules with weak injective dimension at most $n$, and ${\mathcal {W F}}$ the class of all right $R$-modules with weak flat dimension at most $n$. Using left (right) ${\mathcal {W I}}$-resolutions and the left derived functors of Hom we study the weak injective dimensions of modules and rings. Also we prove that $- \otimes -$ is right balanced on ${\mathcal {M}}_R \times {_R{\mathcal {M}}}$ by ${\mathcal {W F}} \times {\mathcal {W I}}$, and investigate the global right ${\mathcal {W I}}$-dimension of $_R{\mathcal {M}}$ by right derived functors of $\otimes $.
LA - eng
KW - weak injective module; weak flat module; weak injective dimension; weak flat dimension
UR - http://eudml.org/doc/297191
ER -
References
top- Ding N., 10.1080/00927879608825646, Comm. Algebra. 24 (1996), no. 4, 1459–1470. MR1380605DOI10.1080/00927879608825646
- Enochs E. E., Jenda O. M. G., Relative Homological Algebra, De Gruyter Expositions in Mathematics, 30, Walter de Gruyter, Berlin, 2000. Zbl0952.13001MR1753146
- Enochs E. E., Huang Z., 10.1007/s10468-011-9282-6, Algebr. Represent. Theory 15 (2012), no. 6, 1131–1145. MR2994019DOI10.1007/s10468-011-9282-6
- Gao Z., Wang F., 10.1080/00927872.2014.924128, Comm. Algebra 43 (2015), no. 9, 3857–3868. MR3360853DOI10.1080/00927872.2014.924128
- Gao Z., Huang Z., 10.1007/s10474-015-0540-7, Acta Math. Hungar. 147 (2015), no. 1, 135–157. MR3391518DOI10.1007/s10474-015-0540-7
- Göbel R., Trlifaj J., Approximations and Endomorphism Algebra of Modules, De Gruyter Expositions in Mathematics, 41, Walter de Gruyter, Berlin, 2006. MR2251271
- Rotman J. J., An Introduction to Homological Algebra, Pure and Applied Mathematics, 85, Academic Press, New York, 1979. Zbl1157.18001MR0538169
- Stenström B., 10.1112/jlms/s2-2.2.323, J. London Math. Soc. (2) 2 (1970), 323–329. MR0258888DOI10.1112/jlms/s2-2.2.323
- Xu J., 10.1007/BFb0094173, Lecture Notes in Mathematics, 1634, Springer, Berlin, 1996. MR1438789DOI10.1007/BFb0094173
- Zeng Y., Chen J., 10.1080/00927870903200851, Comm. Algebra. 38 (2010), no. 10, 3851–3867. MR2760695DOI10.1080/00927870903200851
- Zhang D., Ouyang B., 10.1142/S1005386715000309, Algebra Colloq. 22 (2015), no. 2, 349–360. MR3336067DOI10.1142/S1005386715000309
- Zhao T., Homological properties of modules with finite weak injective and weak flat dimensions, Bull. Malays. Math. Sci. Soc. 41 (2018), no. 2, 779–805. MR3781545
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.