On complete moment convergence for weighted sums of negatively superadditive dependent random variables
Applications of Mathematics (2020)
- Volume: 65, Issue: 4, page 355-377
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHuang, Haiwu, and Lu, Xuewen. "On complete moment convergence for weighted sums of negatively superadditive dependent random variables." Applications of Mathematics 65.4 (2020): 355-377. <http://eudml.org/doc/297216>.
@article{Huang2020,
abstract = {In this work, the complete moment convergence and complete convergence for weighted sums of negatively superadditive dependent (NSD) random variables are studied, and some equivalent conditions of these strong convergences are established. These main results generalize and improve the corresponding theorems of Baum and Katz (1965) and Chow (1988) to weighted sums of NSD random variables without the assumption of identical distribution. As an application, a Marcinkiewicz-Zygmund-type strong law of large numbers for weighted sums of NSD random variables is obtained.},
author = {Huang, Haiwu, Lu, Xuewen},
journal = {Applications of Mathematics},
keywords = {NSD random variables; complete moment convergence; weighted sum; equivalent conditions},
language = {eng},
number = {4},
pages = {355-377},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On complete moment convergence for weighted sums of negatively superadditive dependent random variables},
url = {http://eudml.org/doc/297216},
volume = {65},
year = {2020},
}
TY - JOUR
AU - Huang, Haiwu
AU - Lu, Xuewen
TI - On complete moment convergence for weighted sums of negatively superadditive dependent random variables
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 4
SP - 355
EP - 377
AB - In this work, the complete moment convergence and complete convergence for weighted sums of negatively superadditive dependent (NSD) random variables are studied, and some equivalent conditions of these strong convergences are established. These main results generalize and improve the corresponding theorems of Baum and Katz (1965) and Chow (1988) to weighted sums of NSD random variables without the assumption of identical distribution. As an application, a Marcinkiewicz-Zygmund-type strong law of large numbers for weighted sums of NSD random variables is obtained.
LA - eng
KW - NSD random variables; complete moment convergence; weighted sum; equivalent conditions
UR - http://eudml.org/doc/297216
ER -
References
top- Alam, K., Saxena, K. M. L., 10.1080/03610928108828102, Commun. Stat., Theory Methods A10 (1981), 1183-1196. (1981) Zbl0471.62045MR0623526DOI10.1080/03610928108828102
- Amini, M., Bozorgnia, A., Naderi, H., Volodin, A., 10.3103/S1055134415010022, Sib. Adv. Math. 25 (2015), 11-20. (2015) Zbl1328.60082MR3490729DOI10.3103/S1055134415010022
- Bai, Z., Su, C., The complete convergence for partial sums of i.i.d. random variables, Sci. Sin., Ser. A 28 (1985), 1261-1277. (1985) Zbl0554.60039MR0851970
- Baum, L. E., Katz, M., 10.1090/S0002-9947-1965-0198524-1, Trans. Am. Math. Soc. 120 (1965), 108-123. (1965) Zbl0142.14802MR0198524DOI10.1090/S0002-9947-1965-0198524-1
- Chen, P. Y., Wang, D. C., 10.1007/s10114-010-7625-6, Acta Math. Sin., Engl. Ser. 26 (2010), 679-690. (2010) Zbl1205.60062MR2591647DOI10.1007/s10114-010-7625-6
- Chow, Y. S., On the rate of moment convergence of sample sums and extremes, Bull. Inst. Math., Acad. Sin. 16 (1988), 177-201. (1988) Zbl0655.60028MR1089491
- Christofides, T. C., Vaggelatou, E., 10.1016/S0047-259X(03)00064-2, J. Multivariate Anal. 88 (2004), 138-151. (2004) Zbl1034.60016MR2021866DOI10.1016/S0047-259X(03)00064-2
- Deng, X., Wang, X., Wu, Y., Ding, Y., 10.1007/s13398-015-0225-7, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 110 (2016), 97-120. (2016) Zbl1334.60037MR3462077DOI10.1007/s13398-015-0225-7
- Eghbal, N., Amini, M., Bozorgnia, A., 10.1016/j.spl.2009.12.014, Stat. Probab. Lett. 80 (2010), 587-591. (2010) Zbl1187.60020MR2595134DOI10.1016/j.spl.2009.12.014
- Eghbal, N., Amini, M., Bozorgnia, A., 10.1016/j.spl.2011.03.005, Stat. Probab. Lett. 81 (2011), 1112-1120. (2011) Zbl1228.60039MR2803752DOI10.1016/j.spl.2011.03.005
- Erdős, P., 10.1214/aoms/1177730037, Ann. Math. Stat. 20 (1949), 286-291. (1949) Zbl0033.29001MR0030714DOI10.1214/aoms/1177730037
- Gut, A., 10.1007/978-1-4614-4708-5, Springer Texts in Statistics. Springer, New York (2005). (2005) Zbl1076.60001MR2125120DOI10.1007/978-1-4614-4708-5
- Hsu, P. L., Robbins, H., 10.1073/pnas.33.2.25, Proc. Natl. Acad. Sci. USA 33 (1947), 25-31. (1947) Zbl0030.20101MR0019852DOI10.1073/pnas.33.2.25
- Hu, T., Negatively superadditive dependence of random variables with applications, Chin. J. Appl. Probab. Stat. 16 (2000), 133-144. (2000) Zbl1050.60502MR1812714
- Joag-Dev, K., Proschan, F., 10.1214/aos/1176346079, Ann. Stat. 11 (1983), 286-295. (1983) Zbl0508.62041MR0684886DOI10.1214/aos/1176346079
- Kemperman, J. H. B., 10.1016/1385-7258(77)90027-0, Nederl. Akad. Wet., Proc., Ser. A 80 (1977), 313-331. (1977) Zbl0384.28012MR0467867DOI10.1016/1385-7258(77)90027-0
- Naderi, H., Amini, M., Bozorgnia, A., 10.1007/s11766-017-3437-0, Appl. Math., Ser. B (Engl. Ed.) 32 (2017), 270-280. (2017) Zbl1399.60053MR3694062DOI10.1007/s11766-017-3437-0
- Shen, Y., Wang, X. J., Yang, W. Z., Hu, S. H., 10.1007/s10114-012-1723-6, Acta Math. Sin., Engl. Ser. 29 (2013), 743-756. (2013) Zbl1263.60025MR3029287DOI10.1007/s10114-012-1723-6
- Shen, A., Xue, M., Volodin, A., 10.1080/17442508.2015.1110153, Stochastics 88 (2016), 606-621. (2016) Zbl1337.60038MR3473853DOI10.1080/17442508.2015.1110153
- Shen, A., Zhang, Y., Volodin, A., 10.1007/s00184-014-0503-y, Metrika 78 (2015), 295-311. (2015) Zbl1333.60022MR3320899DOI10.1007/s00184-014-0503-y
- Sung, S. H., 10.1155/2009/271265, J. Inequal. Appl. 2009 (2009), Article ID 271265, 14 pages. (2009) Zbl1180.60019MR2551753DOI10.1155/2009/271265
- Wang, X., Deng, X., Zheng, L., Hu, S., 10.1080/02331888.2013.800066, Statistics 48 (2014), 834-850. (2014) Zbl1319.60063MR3234065DOI10.1080/02331888.2013.800066
- Wang, X., Shen, A., Chen, Z., Hu, S., 10.1007/s11749-014-0402-6, TEST 24 (2015), 166-184. (2015) Zbl1316.60042MR3314578DOI10.1007/s11749-014-0402-6
- Wang, X., Wu, Y., 10.4134/JKMS.j160293, J. Korean Math. Soc. 54 (2017), 877-896. (2017) Zbl1366.60068MR3640914DOI10.4134/JKMS.j160293
- Wu, Q., Probability Limit Theory for Mixing Sequences, Science Press of China, Beijing (2006). (2006)
- Wu, Y., 10.1007/s13398-013-0133-7, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 108 (2014), 669-681. (2014) Zbl1296.60078MR3249968DOI10.1007/s13398-013-0133-7
- Zhang, Y., 10.2298/FIL1507541Z, Filomat 29 (2015), 1541-1547. (2015) Zbl06749122MR3373155DOI10.2298/FIL1507541Z
- Zheng, L., Wang, X., Yang, W., 10.2298/FIL1702295Z, Filomat 31 (2017), 295-308. (2017) MR3628840DOI10.2298/FIL1702295Z
- Zhou, X., 10.1016/j.spl.2009.10.018, Stat. Probab. Lett. 80 (2010), 285-292. (2010) Zbl1186.60031MR2593564DOI10.1016/j.spl.2009.10.018
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.