When has a clopen -base
Ramiro Lafuente-Rodriguez; Warren Wm. McGovern
Mathematica Bohemica (2021)
- Issue: 1, page 69-89
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topLafuente-Rodriguez, Ramiro, and McGovern, Warren Wm.. "When ${\rm Min}(G)^{-1}$ has a clopen $\pi $-base." Mathematica Bohemica (2021): 69-89. <http://eudml.org/doc/297218>.
@article{Lafuente2021,
abstract = {It is our aim to contribute to the flourishing collection of knowledge centered on the space of minimal prime subgroups of a given lattice-ordered group. Specifically, we are interested in the inverse topology. In general, this space is compact and $T_1$, but need not be Hausdorff. In 2006, W. Wm. McGovern showed that this space is a boolean space (i.e. a compact zero-dimensional and Hausdorff space) if and only if the $l$-group in question is weakly complemented. A slightly weaker topological property than having a base of clopen subsets is having a clopen $\pi $-base. Recall that a $\pi $-base is a collection of nonempty open subsets such that every nonempty open subset of the space contains a member of the $\pi $-base; obviously, a base is a $\pi $-base. In what follows we classify when the inverse topology on the space of prime subgroups has a clopen $\pi $-base.},
author = {Lafuente-Rodriguez, Ramiro, McGovern, Warren Wm.},
journal = {Mathematica Bohemica},
keywords = {lattice-ordered group; minimal prime subgroup; maximal $d$-subgroup; archimedean $l$-group; $\mathbf \{W\}$},
language = {eng},
number = {1},
pages = {69-89},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {When $\{\rm Min\}(G)^\{-1\}$ has a clopen $\pi $-base},
url = {http://eudml.org/doc/297218},
year = {2021},
}
TY - JOUR
AU - Lafuente-Rodriguez, Ramiro
AU - McGovern, Warren Wm.
TI - When ${\rm Min}(G)^{-1}$ has a clopen $\pi $-base
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 69
EP - 89
AB - It is our aim to contribute to the flourishing collection of knowledge centered on the space of minimal prime subgroups of a given lattice-ordered group. Specifically, we are interested in the inverse topology. In general, this space is compact and $T_1$, but need not be Hausdorff. In 2006, W. Wm. McGovern showed that this space is a boolean space (i.e. a compact zero-dimensional and Hausdorff space) if and only if the $l$-group in question is weakly complemented. A slightly weaker topological property than having a base of clopen subsets is having a clopen $\pi $-base. Recall that a $\pi $-base is a collection of nonempty open subsets such that every nonempty open subset of the space contains a member of the $\pi $-base; obviously, a base is a $\pi $-base. In what follows we classify when the inverse topology on the space of prime subgroups has a clopen $\pi $-base.
LA - eng
KW - lattice-ordered group; minimal prime subgroup; maximal $d$-subgroup; archimedean $l$-group; $\mathbf {W}$
UR - http://eudml.org/doc/297218
ER -
References
top- Azarpanah, F., Karamzadeh, O. A. S., Aliabad, A. Rezai, 10.4064/fm_1999_160_1_1_15_25, Fund. Math. 160 (1999), 15-25. (1999) Zbl0991.54014MR1694400DOI10.4064/fm_1999_160_1_1_15_25
- Bhattacharjee, P., McGovern, W. Wm., 10.1080/00927872.2011.617228, Commun. Algebra 41 (2013), 99-108. (2013) Zbl1264.13004MR3010524DOI10.1080/00927872.2011.617228
- Bhattacharjee, P., McGovern, W. Wm., 10.2989/16073606.2017.1372529, Quaest. Math. 41 (2018), 81-98. (2018) Zbl07117253MR3761490DOI10.2989/16073606.2017.1372529
- Bhattacharjee, P., McGovern, W. Wm., 10.1007/s12215-017-0323-9, Rend. Circ. Mat. Palermo, Series 2 67 (2018), 421-440. (2018) Zbl06992778MR3911999DOI10.1007/s12215-017-0323-9
- Conrad, P., Lattice Ordered Groups, Tulane Lecture Notes. Tulane University, New Orleans (1970). (1970) Zbl0258.06011
- Conrad, P., Martínez, J., 10.1016/0019-3577(90)90019-J, Indag. Math., New Ser. 1 (1990), 281-297. (1990) Zbl0735.06006MR1075880DOI10.1016/0019-3577(90)90019-J
- Darnel, M. R., Theory of Lattice-Ordered Groups, Pure and Applied Mathematics 187. Marcel Dekker, New York (1995). (1995) Zbl0810.06016MR1304052
- Ghashghaei, E., McGovern, W. Wm., 10.1080/00927872.2016.1206347, Commun. Algebra 45 (2017), 1151-1165. (2017) Zbl1386.16021MR3573366DOI10.1080/00927872.2016.1206347
- Huijsmans, C. B., Pagter, B. de, 10.1016/1385-7258(80)90040-2, Indag. Math. 42 (1980), 391-408. (1980) Zbl0451.46003MR0597997DOI10.1016/1385-7258(80)90040-2
- Huijsmans, C. B., Pagter, B. de, 10.4153/CJM-1983-056-6, Can. J. Math. 35 (1983), 1010-1029. (1983) Zbl0505.46004MR0738841DOI10.4153/CJM-1983-056-6
- Kist, J., 10.1007/BF01111196, Math. Z. 111 (1969), 151-158. (1969) Zbl0177.06404MR0245566DOI10.1007/BF01111196
- Knox, M. L., McGovern, W. Wm., 10.1007/s00012-010-0041-z, Algebra Univers. 62 (2009), 91-112. (2009) Zbl1192.06014MR2645226DOI10.1007/s00012-010-0041-z
- Levy, R., 10.4153/CJM-1977-030-7, Can. J. Math. 29 (1977), 284-288. (1977) Zbl0342.54032MR0464203DOI10.4153/CJM-1977-030-7
- Martínez, J., Zenk, E. R., 10.1007/s00012-003-1841-1, Algebra Univers. 50 (2003), 231-257. (2003) Zbl1092.06011MR2037528DOI10.1007/s00012-003-1841-1
- Martínez, J., Zenk, E. R., 10.1007/s10485-007-9110-7, Appl. Categ. Struct. 16 (2008), 521-533. (2008) Zbl1156.06004MR2421540DOI10.1007/s10485-007-9110-7
- McGovern, W. Wm., 10.1016/j.jpaa.2005.07.012, J. Pure Appl. Algebra 205 (2006), 243-265. (2006) Zbl1095.13025MR2203615DOI10.1016/j.jpaa.2005.07.012
- Speed, T. P., 10.1017/S144678870001911X, J. Aust. Math. Soc. 18 (1974), 54-72. (1974) Zbl0294.06009MR0354476DOI10.1017/S144678870001911X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.