Exponential stability of a flexible structure with history and thermal effect

Roberto Díaz; Jaime Muñoz; Carlos Martínez; Octavio Vera

Applications of Mathematics (2020)

  • Volume: 65, Issue: 4, page 407-420
  • ISSN: 0862-7940

Abstract

top
In this paper we study the asymptotic behavior of a system composed of an integro-partial differential equation that models the longitudinal oscillation of a beam with a memory effect to which a thermal effect has been given by the Green-Naghdi model type III, being physically more accurate than the Fourier and Cattaneo models. To achieve this goal, we will use arguments from spectral theory, considering a suitable hypothesis of smoothness on the integro-partial differential equation.

How to cite

top

Díaz, Roberto, et al. "Exponential stability of a flexible structure with history and thermal effect." Applications of Mathematics 65.4 (2020): 407-420. <http://eudml.org/doc/297220>.

@article{Díaz2020,
abstract = {In this paper we study the asymptotic behavior of a system composed of an integro-partial differential equation that models the longitudinal oscillation of a beam with a memory effect to which a thermal effect has been given by the Green-Naghdi model type III, being physically more accurate than the Fourier and Cattaneo models. To achieve this goal, we will use arguments from spectral theory, considering a suitable hypothesis of smoothness on the integro-partial differential equation.},
author = {Díaz, Roberto, Muñoz, Jaime, Martínez, Carlos, Vera, Octavio},
journal = {Applications of Mathematics},
keywords = {exponential stability; dissipative system; flexible structure; functional analysis},
language = {eng},
number = {4},
pages = {407-420},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Exponential stability of a flexible structure with history and thermal effect},
url = {http://eudml.org/doc/297220},
volume = {65},
year = {2020},
}

TY - JOUR
AU - Díaz, Roberto
AU - Muñoz, Jaime
AU - Martínez, Carlos
AU - Vera, Octavio
TI - Exponential stability of a flexible structure with history and thermal effect
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 4
SP - 407
EP - 420
AB - In this paper we study the asymptotic behavior of a system composed of an integro-partial differential equation that models the longitudinal oscillation of a beam with a memory effect to which a thermal effect has been given by the Green-Naghdi model type III, being physically more accurate than the Fourier and Cattaneo models. To achieve this goal, we will use arguments from spectral theory, considering a suitable hypothesis of smoothness on the integro-partial differential equation.
LA - eng
KW - exponential stability; dissipative system; flexible structure; functional analysis
UR - http://eudml.org/doc/297220
ER -

References

top
  1. Alves, M. S., Gamboa, P., Gorain, G. C., Rambaud, A., Vera, O., 10.1016/j.indag.2016.03.001, Indag. Math., New Ser. 27 (2016), 821-834. (2016) Zbl1359.80003MR3505996DOI10.1016/j.indag.2016.03.001
  2. Alves, M., Rivera, J. Muñoz, Sepúlveda, M., Villagrán, O. Vera, Garay, M. Zegarra, 10.1002/mana.201200319, Math. Nachr. 287 (2014), 483-497. (2014) Zbl1291.35386MR3193931DOI10.1002/mana.201200319
  3. Aouadi, M., 10.1016/j.jmaa.2013.01.059, J. Math. Anal. Appl. 402 (2013), 745-757. (2013) Zbl1307.74024MR3029188DOI10.1016/j.jmaa.2013.01.059
  4. Cattaneo, C., Sulla conduzione del calore, Atti Semin. Mat. Fis. Univ., Modena 3 (1948), 83-101 Italian. (1948) Zbl0035.26203MR0032898
  5. Christov, C. I., 10.1016/j.mechrescom.2008.11.003, Mech. Res. Commun. 36 (2009), 481-486. (2009) Zbl1258.80001MR2510197DOI10.1016/j.mechrescom.2008.11.003
  6. Coleman, B. D., Gurtin, M. E., 10.1007/BF01596912, Z. Angew. Math. Phys. 18 (1967), 199-208. (1967) MR0214334DOI10.1007/BF01596912
  7. Dafermos, C. M., 10.1007/BF00251609, Arch. Rational. Mech. Anal. 37 (1970), 297-308. (1970) Zbl0214.24503MR0281400DOI10.1007/BF00251609
  8. Fatori, L. H., Rivera, J. E. Munõz, Monteiro, R. Nunes, 10.3233/ASY-131196, Asymptotic Anal. 86 (2014), 227-247. (2014) Zbl1294.80003MR3181823DOI10.3233/ASY-131196
  9. Feng, B., Li, H., 10.1186/s13661-017-0891-9, Bound. Value Probl. 2017 (2017), Article ID 158, 13 pages. (2017) Zbl1378.35034MR3719703DOI10.1186/s13661-017-0891-9
  10. Sare, H. D. Fernández, Racke, R., 10.1007/s00205-009-0220-2, Arch. Ration. Mech. Anal. 194 (2009), 221-251. (2009) Zbl1251.74011MR2533927DOI10.1007/s00205-009-0220-2
  11. Gearhart, L., 10.1090/S0002-9947-1978-0461206-1, Trans. Am. Math. Soc. 236 (1978), 385-394. (1978) Zbl0326.47038MR0461206DOI10.1090/S0002-9947-1978-0461206-1
  12. Giorgi, C., Grandi, D., Pata, V., 10.3934/dcdsb.2014.19.2133, Discrete Contin. Dyn. Syst., Ser. B 19 (2014), 2133-2143. (2014) Zbl1302.80004MR3253249DOI10.3934/dcdsb.2014.19.2133
  13. Gorain, G. C., 10.1007/s10958-014-1787-1, J. Math. Sci., New York 198 (2014), 245-251 translated from Nelinini Kolyvannya 16 2013 157-164. (2014) Zbl1301.35178MR3374913DOI10.1007/s10958-014-1787-1
  14. Green, A. E., Naghdi, P. M., 10.1098/rspa.1991.0012, Proc. R. Soc. Lond., Ser. A 432 (1991), (171-194). (171) Zbl0726.73004MR1116956DOI10.1098/rspa.1991.0012
  15. Gurtin, M. E., Pipkin, A. C., 10.1007/BF00281373, Arch. Ration. Mech. Anal. 31 (1968), 113-126. (1968) Zbl0164.12901MR1553521DOI10.1007/BF00281373
  16. Liu, K., Liu, Z., 10.1007/BF00917570, Z. Angew. Math. Phys. 47 (1996), 1-15. (1996) Zbl0841.73026MR1408667DOI10.1007/BF00917570
  17. Liu, K., Liu, Z., 10.1137/S0363012996310703, SIAM J. Control Optimization 36 (1998), 1086-1098. (1998) Zbl0909.35018MR1613917DOI10.1137/S0363012996310703
  18. Liu, Z., Zheng, S., Semigroups Associated with Dissipative Systems, Chapman & Hall/CRC Research Notes in Mathematics 398. Chapman and Hall/CRC, Boca Raton (1999). (1999) Zbl0924.73003MR1681343
  19. Magaña, A., Quintanilla, R., 10.1002/mma.3472, Math. Methods Appl. Sci. 39 (2016), 225-235. (2016) Zbl1336.35062MR3453707DOI10.1002/mma.3472
  20. Pamplona, P. X., Rivera, J. E. Muñoz, Quintanilla, R., 10.1016/j.jmaa.2011.01.045, J. Math. Anal. Appl. 379 (2011), 682-705. (2011) Zbl1259.35136MR2784351DOI10.1016/j.jmaa.2011.01.045
  21. Pazy, A., 10.1007/978-1-4612-5561-1, Applied Mathematical Sciences 44. Springer, New York (1983). (1983) Zbl0516.47023MR0710486DOI10.1007/978-1-4612-5561-1
  22. Santos, M. L., Almeida, D. S., 10.1016/j.jmaa.2016.10.074, J. Math. Anal. Appl. 448 (2017), 650-671. (2017) Zbl1388.35191MR3579904DOI10.1016/j.jmaa.2016.10.074
  23. Straughan, B., 10.1007/978-1-4614-0493-4, Applied Mathematical Sciences 177. Springer, New York (2011). (2011) Zbl1232.80001MR2663899DOI10.1007/978-1-4614-0493-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.