Exponential stability of a flexible structure with history and thermal effect
Roberto Díaz; Jaime Muñoz; Carlos Martínez; Octavio Vera
Applications of Mathematics (2020)
- Volume: 65, Issue: 4, page 407-420
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topDíaz, Roberto, et al. "Exponential stability of a flexible structure with history and thermal effect." Applications of Mathematics 65.4 (2020): 407-420. <http://eudml.org/doc/297220>.
@article{Díaz2020,
abstract = {In this paper we study the asymptotic behavior of a system composed of an integro-partial differential equation that models the longitudinal oscillation of a beam with a memory effect to which a thermal effect has been given by the Green-Naghdi model type III, being physically more accurate than the Fourier and Cattaneo models. To achieve this goal, we will use arguments from spectral theory, considering a suitable hypothesis of smoothness on the integro-partial differential equation.},
author = {Díaz, Roberto, Muñoz, Jaime, Martínez, Carlos, Vera, Octavio},
journal = {Applications of Mathematics},
keywords = {exponential stability; dissipative system; flexible structure; functional analysis},
language = {eng},
number = {4},
pages = {407-420},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Exponential stability of a flexible structure with history and thermal effect},
url = {http://eudml.org/doc/297220},
volume = {65},
year = {2020},
}
TY - JOUR
AU - Díaz, Roberto
AU - Muñoz, Jaime
AU - Martínez, Carlos
AU - Vera, Octavio
TI - Exponential stability of a flexible structure with history and thermal effect
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 4
SP - 407
EP - 420
AB - In this paper we study the asymptotic behavior of a system composed of an integro-partial differential equation that models the longitudinal oscillation of a beam with a memory effect to which a thermal effect has been given by the Green-Naghdi model type III, being physically more accurate than the Fourier and Cattaneo models. To achieve this goal, we will use arguments from spectral theory, considering a suitable hypothesis of smoothness on the integro-partial differential equation.
LA - eng
KW - exponential stability; dissipative system; flexible structure; functional analysis
UR - http://eudml.org/doc/297220
ER -
References
top- Alves, M. S., Gamboa, P., Gorain, G. C., Rambaud, A., Vera, O., 10.1016/j.indag.2016.03.001, Indag. Math., New Ser. 27 (2016), 821-834. (2016) Zbl1359.80003MR3505996DOI10.1016/j.indag.2016.03.001
- Alves, M., Rivera, J. Muñoz, Sepúlveda, M., Villagrán, O. Vera, Garay, M. Zegarra, 10.1002/mana.201200319, Math. Nachr. 287 (2014), 483-497. (2014) Zbl1291.35386MR3193931DOI10.1002/mana.201200319
- Aouadi, M., 10.1016/j.jmaa.2013.01.059, J. Math. Anal. Appl. 402 (2013), 745-757. (2013) Zbl1307.74024MR3029188DOI10.1016/j.jmaa.2013.01.059
- Cattaneo, C., Sulla conduzione del calore, Atti Semin. Mat. Fis. Univ., Modena 3 (1948), 83-101 Italian. (1948) Zbl0035.26203MR0032898
- Christov, C. I., 10.1016/j.mechrescom.2008.11.003, Mech. Res. Commun. 36 (2009), 481-486. (2009) Zbl1258.80001MR2510197DOI10.1016/j.mechrescom.2008.11.003
- Coleman, B. D., Gurtin, M. E., 10.1007/BF01596912, Z. Angew. Math. Phys. 18 (1967), 199-208. (1967) MR0214334DOI10.1007/BF01596912
- Dafermos, C. M., 10.1007/BF00251609, Arch. Rational. Mech. Anal. 37 (1970), 297-308. (1970) Zbl0214.24503MR0281400DOI10.1007/BF00251609
- Fatori, L. H., Rivera, J. E. Munõz, Monteiro, R. Nunes, 10.3233/ASY-131196, Asymptotic Anal. 86 (2014), 227-247. (2014) Zbl1294.80003MR3181823DOI10.3233/ASY-131196
- Feng, B., Li, H., 10.1186/s13661-017-0891-9, Bound. Value Probl. 2017 (2017), Article ID 158, 13 pages. (2017) Zbl1378.35034MR3719703DOI10.1186/s13661-017-0891-9
- Sare, H. D. Fernández, Racke, R., 10.1007/s00205-009-0220-2, Arch. Ration. Mech. Anal. 194 (2009), 221-251. (2009) Zbl1251.74011MR2533927DOI10.1007/s00205-009-0220-2
- Gearhart, L., 10.1090/S0002-9947-1978-0461206-1, Trans. Am. Math. Soc. 236 (1978), 385-394. (1978) Zbl0326.47038MR0461206DOI10.1090/S0002-9947-1978-0461206-1
- Giorgi, C., Grandi, D., Pata, V., 10.3934/dcdsb.2014.19.2133, Discrete Contin. Dyn. Syst., Ser. B 19 (2014), 2133-2143. (2014) Zbl1302.80004MR3253249DOI10.3934/dcdsb.2014.19.2133
- Gorain, G. C., 10.1007/s10958-014-1787-1, J. Math. Sci., New York 198 (2014), 245-251 translated from Nelinini Kolyvannya 16 2013 157-164. (2014) Zbl1301.35178MR3374913DOI10.1007/s10958-014-1787-1
- Green, A. E., Naghdi, P. M., 10.1098/rspa.1991.0012, Proc. R. Soc. Lond., Ser. A 432 (1991), (171-194). (171) Zbl0726.73004MR1116956DOI10.1098/rspa.1991.0012
- Gurtin, M. E., Pipkin, A. C., 10.1007/BF00281373, Arch. Ration. Mech. Anal. 31 (1968), 113-126. (1968) Zbl0164.12901MR1553521DOI10.1007/BF00281373
- Liu, K., Liu, Z., 10.1007/BF00917570, Z. Angew. Math. Phys. 47 (1996), 1-15. (1996) Zbl0841.73026MR1408667DOI10.1007/BF00917570
- Liu, K., Liu, Z., 10.1137/S0363012996310703, SIAM J. Control Optimization 36 (1998), 1086-1098. (1998) Zbl0909.35018MR1613917DOI10.1137/S0363012996310703
- Liu, Z., Zheng, S., Semigroups Associated with Dissipative Systems, Chapman & Hall/CRC Research Notes in Mathematics 398. Chapman and Hall/CRC, Boca Raton (1999). (1999) Zbl0924.73003MR1681343
- Magaña, A., Quintanilla, R., 10.1002/mma.3472, Math. Methods Appl. Sci. 39 (2016), 225-235. (2016) Zbl1336.35062MR3453707DOI10.1002/mma.3472
- Pamplona, P. X., Rivera, J. E. Muñoz, Quintanilla, R., 10.1016/j.jmaa.2011.01.045, J. Math. Anal. Appl. 379 (2011), 682-705. (2011) Zbl1259.35136MR2784351DOI10.1016/j.jmaa.2011.01.045
- Pazy, A., 10.1007/978-1-4612-5561-1, Applied Mathematical Sciences 44. Springer, New York (1983). (1983) Zbl0516.47023MR0710486DOI10.1007/978-1-4612-5561-1
- Santos, M. L., Almeida, D. S., 10.1016/j.jmaa.2016.10.074, J. Math. Anal. Appl. 448 (2017), 650-671. (2017) Zbl1388.35191MR3579904DOI10.1016/j.jmaa.2016.10.074
- Straughan, B., 10.1007/978-1-4614-0493-4, Applied Mathematical Sciences 177. Springer, New York (2011). (2011) Zbl1232.80001MR2663899DOI10.1007/978-1-4614-0493-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.