Interval matrices with Monge property
Applications of Mathematics (2020)
- Volume: 65, Issue: 5, page 619-643
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topČerný, Martin. "Interval matrices with Monge property." Applications of Mathematics 65.5 (2020): 619-643. <http://eudml.org/doc/297231>.
@article{Černý2020,
abstract = {We generalize the Monge property of real matrices for interval matrices. We define two classes of interval matrices with the Monge property---in a strong and a weak sense. We study the fundamental properties of both types. We show several different characterizations of the strong Monge property. For the weak Monge property, we give a polynomial description and several sufficient and necessary conditions. For both classes, we study closure properties. We further propose a generalization of an algorithm by Deineko and Filonenko which for a given matrix returns row and column permutations such that the permuted matrix is Monge if the permutations exist.},
author = {Černý, Martin},
journal = {Applications of Mathematics},
keywords = {Monge matrix; interval matrix; interval analysis; linear programming},
language = {eng},
number = {5},
pages = {619-643},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Interval matrices with Monge property},
url = {http://eudml.org/doc/297231},
volume = {65},
year = {2020},
}
TY - JOUR
AU - Černý, Martin
TI - Interval matrices with Monge property
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 5
SP - 619
EP - 643
AB - We generalize the Monge property of real matrices for interval matrices. We define two classes of interval matrices with the Monge property---in a strong and a weak sense. We study the fundamental properties of both types. We show several different characterizations of the strong Monge property. For the weak Monge property, we give a polynomial description and several sufficient and necessary conditions. For both classes, we study closure properties. We further propose a generalization of an algorithm by Deineko and Filonenko which for a given matrix returns row and column permutations such that the permuted matrix is Monge if the permutations exist.
LA - eng
KW - Monge matrix; interval matrix; interval analysis; linear programming
UR - http://eudml.org/doc/297231
ER -
References
top- Alefeld, G., Mayer, G., 10.1016/S0377-0427(00)00342-3, J. Comput. Appl. Math. 121 (2000), 421-464. (2000) Zbl0995.65056MR1780057DOI10.1016/S0377-0427(00)00342-3
- Burkard, R. E., Klinz, B., Rudolf, R., 10.1016/0166-218X(95)00103-X, Discrete Appl. Math. 70 (1996), 95-161. (1996) Zbl0856.90091MR1403225DOI10.1016/0166-218X(95)00103-X
- Cechlárová, K., Szabó, P., 10.1016/0012-365X(90)90143-6, Discrete Math. 81 (1990), 123-128. (1990) Zbl0726.06010MR1054969DOI10.1016/0012-365X(90)90143-6
- Deineko, V. G., Filonenko, V. L., On the reconstruction of specially structured matrices, Aktualnyje problemy EVM i programmirovanije. Dnepropetrovsk, DGU (1979), Russian. (1979)
- Garloff, J., Adm, M., Titi, J., A survey of classes of matrices possessing the interval property and related properties, Reliab. Comput. 22 (2016), 1-14. (2016) MR3451674
- Greenlaw, R., Hoover, H. J., Ruzzo, W. L., Limits to Parallel Computation: -Completeness Theory, Oxford University Press, Oxford (1995). (1995) Zbl0829.68068MR1333600
- Hladík, M., 10.1007/978-3-030-31041-7_16, Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy etc. Methods and Their Applications Studies in Computational Intelligence 835. Springer, Cham (2020), 295-310. (2020) DOI10.1007/978-3-030-31041-7_16
- Monge, G., Mémoire sur la théorie des déblais et des remblais, De l'Imprimerie Royale, Paris (1781), French. (1781)
- Tarjan, R. E., 10.1007/BF00268499, Acta Inf. 6 (1976), 171-185. (1976) Zbl0307.05104MR0424598DOI10.1007/BF00268499
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.