A universal bound for lower Neumann eigenvalues of the Laplacian

Wei Lu; Jing Mao; Chuanxi Wu

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 2, page 473-482
  • ISSN: 0011-4642

Abstract

top
Let M be an n -dimensional ( n 2 ) simply connected Hadamard manifold. If the radial Ricci curvature of M is bounded from below by ( n - 1 ) k ( t ) with respect to some point p M , where t = d ( · , p ) is the Riemannian distance on M to p , k ( t ) is a nonpositive continuous function on ( 0 , ) , then the first n nonzero Neumann eigenvalues of the Laplacian on the geodesic ball B ( p , l ) , with center p and radius 0 < l < , satisfy 1 μ 1 + 1 μ 2 + + 1 μ n l n + 2 ( n + 2 ) 0 l f n - 1 ( t ) d t , where f ( t ) is the solution to f ' ' ( t ) + k ( t ) f ( t ) = 0 on ( 0 , ) , f ( 0 ) = 0 , f ' ( 0 ) = 1 .

How to cite

top

Lu, Wei, Mao, Jing, and Wu, Chuanxi. "A universal bound for lower Neumann eigenvalues of the Laplacian." Czechoslovak Mathematical Journal 70.2 (2020): 473-482. <http://eudml.org/doc/297236>.

@article{Lu2020,
abstract = {Let $M$ be an $n$-dimensional ($n\ge 2$) simply connected Hadamard manifold. If the radial Ricci curvature of $M$ is bounded from below by $(n-1)k(t)$ with respect to some point $p\in M$, where $t=d(\cdot ,p)$ is the Riemannian distance on $M$ to $p$, $k(t)$ is a nonpositive continuous function on $(0,\infty )$, then the first $n$ nonzero Neumann eigenvalues of the Laplacian on the geodesic ball $B(p,l)$, with center $p$ and radius $0<l<\infty $, satisfy \[ \frac\{1\}\{\mu \_1\}+\frac\{1\}\{\mu \_2\}+\cdots +\frac\{1\}\{\mu \_n\}\ge \frac\{l^\{n+2\}\}\{(n+2)\int \_\{0\}^\{l\}f^\{n-1\}(t)\{\rm d\}t\}, \] where $f(t)$ is the solution to \[ \{\left\lbrace \begin\{array\}\{ll\} f^\{\prime \prime \}(t)+k(t)f(t)=0 \quad \text\{on\} \ (0,\infty ),\\ f(0)=0, \ f^\{\prime \}(0)=1. \end\{array\}\right.\} \]},
author = {Lu, Wei, Mao, Jing, Wu, Chuanxi},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hadamard manifold; Neumann eigenvalue; radial Ricci curvature},
language = {eng},
number = {2},
pages = {473-482},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A universal bound for lower Neumann eigenvalues of the Laplacian},
url = {http://eudml.org/doc/297236},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Lu, Wei
AU - Mao, Jing
AU - Wu, Chuanxi
TI - A universal bound for lower Neumann eigenvalues of the Laplacian
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 2
SP - 473
EP - 482
AB - Let $M$ be an $n$-dimensional ($n\ge 2$) simply connected Hadamard manifold. If the radial Ricci curvature of $M$ is bounded from below by $(n-1)k(t)$ with respect to some point $p\in M$, where $t=d(\cdot ,p)$ is the Riemannian distance on $M$ to $p$, $k(t)$ is a nonpositive continuous function on $(0,\infty )$, then the first $n$ nonzero Neumann eigenvalues of the Laplacian on the geodesic ball $B(p,l)$, with center $p$ and radius $0<l<\infty $, satisfy \[ \frac{1}{\mu _1}+\frac{1}{\mu _2}+\cdots +\frac{1}{\mu _n}\ge \frac{l^{n+2}}{(n+2)\int _{0}^{l}f^{n-1}(t){\rm d}t}, \] where $f(t)$ is the solution to \[ {\left\lbrace \begin{array}{ll} f^{\prime \prime }(t)+k(t)f(t)=0 \quad \text{on} \ (0,\infty ),\\ f(0)=0, \ f^{\prime }(0)=1. \end{array}\right.} \]
LA - eng
KW - Hadamard manifold; Neumann eigenvalue; radial Ricci curvature
UR - http://eudml.org/doc/297236
ER -

References

top
  1. Ashbaugh, M. S., Benguria, R. D., 10.1137/0524034, SIAM J. Math. Anal. 24 (1993), 557-570. (1993) Zbl0796.35122MR1215424DOI10.1137/0524034
  2. Ashbaugh, M. S., Benguria, R. D., Laugesen, R. S., Weidl, T., 10.4171/OWR/2009/06, Oberwolfach Rep. 6 (2009), 355-428. (2009) Zbl1177.35003MR2604061DOI10.4171/OWR/2009/06
  3. Bandle, C., 10.1137/0122016, SIAM J. Appl. Math. 22 (1972), 142-147. (1972) Zbl0237.35069MR0313648DOI10.1137/0122016
  4. Bandle, C., Isoperimetric Inequalities and Applications, Monographs and Studies in Mathematics 7, Pitman, Boston (1980). (1980) Zbl0436.35063MR0572958
  5. Brouwer, L. E. J., 10.1007/BF01456931, Math. Ann. 71 (1911), 97-115 German 9999JFM99999 42.0417.01. (1911) MR1511644DOI10.1007/BF01456931
  6. Chavel, I., 10.1016/S0079-8169(13)62888-3, Pure and Applied Mathematics 115, Academic Press, Orlando (1984). (1984) Zbl0551.53001MR0768584DOI10.1016/S0079-8169(13)62888-3
  7. Enache, C., Philippin, G. A., 10.1002/mma.2743, Math. Methods Appl. Sci. 36 (2013), 2145-2153. (2013) Zbl1276.35121MR3124783DOI10.1002/mma.2743
  8. Freitas, P., Mao, J., Salavessa, I., 10.1007/s00526-013-0692-7, Calc. Var. Partial Differ. Equ. 51 (2014), 701-724. (2014) Zbl1302.35275MR3268868DOI10.1007/s00526-013-0692-7
  9. Girouard, A., Nadirashvili, N., Polterovich, I., 10.4310/jdg/1264601037, J. Differ. Geom. 83 (2009), 637-662. (2009) Zbl1186.35120MR2581359DOI10.4310/jdg/1264601037
  10. Mao, J., 10.1016/j.matpur.2013.06.006, J. Math. Pures Appl. 101 (2014), 372-393. (2014) Zbl1285.58013MR3168915DOI10.1016/j.matpur.2013.06.006
  11. Spanier, E. H., 10.1007/978-1-4684-9322-1, McGraw-Hill Series in Higher Mathematics, McGraw-Hill, New York (1966). (1966) Zbl0145.43303MR0210112DOI10.1007/978-1-4684-9322-1
  12. Szegö, G., 10.1512/iumj.1954.3.53017, J. Ration. Mech. Anal. 3 (1954), 343-356. (1954) Zbl0055.08802MR0061749DOI10.1512/iumj.1954.3.53017
  13. Weinberger, H. F., 10.1512/iumj.1956.5.55021, J. Ration. Mech. Anal. 5 (1956), 633-636. (1956) Zbl0071.09902MR0079286DOI10.1512/iumj.1956.5.55021
  14. Xia, C., 10.1007/s006050050054, Monatsh. Math. 128 (1999), 165-171. (1999) Zbl0941.58021MR1712488DOI10.1007/s006050050054

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.