A universal bound for lower Neumann eigenvalues of the Laplacian
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 2, page 473-482
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLu, Wei, Mao, Jing, and Wu, Chuanxi. "A universal bound for lower Neumann eigenvalues of the Laplacian." Czechoslovak Mathematical Journal 70.2 (2020): 473-482. <http://eudml.org/doc/297236>.
@article{Lu2020,
abstract = {Let $M$ be an $n$-dimensional ($n\ge 2$) simply connected Hadamard manifold. If the radial Ricci curvature of $M$ is bounded from below by $(n-1)k(t)$ with respect to some point $p\in M$, where $t=d(\cdot ,p)$ is the Riemannian distance on $M$ to $p$, $k(t)$ is a nonpositive continuous function on $(0,\infty )$, then the first $n$ nonzero Neumann eigenvalues of the Laplacian on the geodesic ball $B(p,l)$, with center $p$ and radius $0<l<\infty $, satisfy \[ \frac\{1\}\{\mu \_1\}+\frac\{1\}\{\mu \_2\}+\cdots +\frac\{1\}\{\mu \_n\}\ge \frac\{l^\{n+2\}\}\{(n+2)\int \_\{0\}^\{l\}f^\{n-1\}(t)\{\rm d\}t\}, \]
where $f(t)$ is the solution to \[ \{\left\lbrace \begin\{array\}\{ll\} f^\{\prime \prime \}(t)+k(t)f(t)=0 \quad \text\{on\} \ (0,\infty ),\\ f(0)=0, \ f^\{\prime \}(0)=1. \end\{array\}\right.\} \]},
author = {Lu, Wei, Mao, Jing, Wu, Chuanxi},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hadamard manifold; Neumann eigenvalue; radial Ricci curvature},
language = {eng},
number = {2},
pages = {473-482},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A universal bound for lower Neumann eigenvalues of the Laplacian},
url = {http://eudml.org/doc/297236},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Lu, Wei
AU - Mao, Jing
AU - Wu, Chuanxi
TI - A universal bound for lower Neumann eigenvalues of the Laplacian
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 2
SP - 473
EP - 482
AB - Let $M$ be an $n$-dimensional ($n\ge 2$) simply connected Hadamard manifold. If the radial Ricci curvature of $M$ is bounded from below by $(n-1)k(t)$ with respect to some point $p\in M$, where $t=d(\cdot ,p)$ is the Riemannian distance on $M$ to $p$, $k(t)$ is a nonpositive continuous function on $(0,\infty )$, then the first $n$ nonzero Neumann eigenvalues of the Laplacian on the geodesic ball $B(p,l)$, with center $p$ and radius $0<l<\infty $, satisfy \[ \frac{1}{\mu _1}+\frac{1}{\mu _2}+\cdots +\frac{1}{\mu _n}\ge \frac{l^{n+2}}{(n+2)\int _{0}^{l}f^{n-1}(t){\rm d}t}, \]
where $f(t)$ is the solution to \[ {\left\lbrace \begin{array}{ll} f^{\prime \prime }(t)+k(t)f(t)=0 \quad \text{on} \ (0,\infty ),\\ f(0)=0, \ f^{\prime }(0)=1. \end{array}\right.} \]
LA - eng
KW - Hadamard manifold; Neumann eigenvalue; radial Ricci curvature
UR - http://eudml.org/doc/297236
ER -
References
top- Ashbaugh, M. S., Benguria, R. D., 10.1137/0524034, SIAM J. Math. Anal. 24 (1993), 557-570. (1993) Zbl0796.35122MR1215424DOI10.1137/0524034
- Ashbaugh, M. S., Benguria, R. D., Laugesen, R. S., Weidl, T., 10.4171/OWR/2009/06, Oberwolfach Rep. 6 (2009), 355-428. (2009) Zbl1177.35003MR2604061DOI10.4171/OWR/2009/06
- Bandle, C., 10.1137/0122016, SIAM J. Appl. Math. 22 (1972), 142-147. (1972) Zbl0237.35069MR0313648DOI10.1137/0122016
- Bandle, C., Isoperimetric Inequalities and Applications, Monographs and Studies in Mathematics 7, Pitman, Boston (1980). (1980) Zbl0436.35063MR0572958
- Brouwer, L. E. J., 10.1007/BF01456931, Math. Ann. 71 (1911), 97-115 German 9999JFM99999 42.0417.01. (1911) MR1511644DOI10.1007/BF01456931
- Chavel, I., 10.1016/S0079-8169(13)62888-3, Pure and Applied Mathematics 115, Academic Press, Orlando (1984). (1984) Zbl0551.53001MR0768584DOI10.1016/S0079-8169(13)62888-3
- Enache, C., Philippin, G. A., 10.1002/mma.2743, Math. Methods Appl. Sci. 36 (2013), 2145-2153. (2013) Zbl1276.35121MR3124783DOI10.1002/mma.2743
- Freitas, P., Mao, J., Salavessa, I., 10.1007/s00526-013-0692-7, Calc. Var. Partial Differ. Equ. 51 (2014), 701-724. (2014) Zbl1302.35275MR3268868DOI10.1007/s00526-013-0692-7
- Girouard, A., Nadirashvili, N., Polterovich, I., 10.4310/jdg/1264601037, J. Differ. Geom. 83 (2009), 637-662. (2009) Zbl1186.35120MR2581359DOI10.4310/jdg/1264601037
- Mao, J., 10.1016/j.matpur.2013.06.006, J. Math. Pures Appl. 101 (2014), 372-393. (2014) Zbl1285.58013MR3168915DOI10.1016/j.matpur.2013.06.006
- Spanier, E. H., 10.1007/978-1-4684-9322-1, McGraw-Hill Series in Higher Mathematics, McGraw-Hill, New York (1966). (1966) Zbl0145.43303MR0210112DOI10.1007/978-1-4684-9322-1
- Szegö, G., 10.1512/iumj.1954.3.53017, J. Ration. Mech. Anal. 3 (1954), 343-356. (1954) Zbl0055.08802MR0061749DOI10.1512/iumj.1954.3.53017
- Weinberger, H. F., 10.1512/iumj.1956.5.55021, J. Ration. Mech. Anal. 5 (1956), 633-636. (1956) Zbl0071.09902MR0079286DOI10.1512/iumj.1956.5.55021
- Xia, C., 10.1007/s006050050054, Monatsh. Math. 128 (1999), 165-171. (1999) Zbl0941.58021MR1712488DOI10.1007/s006050050054
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.