The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Event-triggered control of cyber-physical systems under asynchronous denial of service attacks

Huaye Peng; Chen Peng; Yong Shao; Deliang Zeng

Kybernetika (2020)

  • Volume: 56, Issue: 2, page 340-362
  • ISSN: 0023-5954

Abstract

top
This paper addresses event-triggered control cyber-physical systems under asynchronous denial of service attacks. First, a general attack model is given, which allows us to conveniently model the asynchronous denial of service attacks within measurement and control channels in a unified framework. Then, under a delicate event triggered communication mechanism, a refined switching control mechanism is proposed to account for various attack intervals and non-attack intervals. Furthermore, sufficient conditions are derived for guaranteing the input to state stability (ISS) of the resulting closed-loop system. Finally, a simulation example of unmanned ground vehicle (UGV) is given to demonstrate the validity of the proposed main results.

How to cite

top

Peng, Huaye, et al. "Event-triggered control of cyber-physical systems under asynchronous denial of service attacks." Kybernetika 56.2 (2020): 340-362. <http://eudml.org/doc/297243>.

@article{Peng2020,
abstract = {This paper addresses event-triggered control cyber-physical systems under asynchronous denial of service attacks. First, a general attack model is given, which allows us to conveniently model the asynchronous denial of service attacks within measurement and control channels in a unified framework. Then, under a delicate event triggered communication mechanism, a refined switching control mechanism is proposed to account for various attack intervals and non-attack intervals. Furthermore, sufficient conditions are derived for guaranteing the input to state stability (ISS) of the resulting closed-loop system. Finally, a simulation example of unmanned ground vehicle (UGV) is given to demonstrate the validity of the proposed main results.},
author = {Peng, Huaye, Peng, Chen, Shao, Yong, Zeng, Deliang},
journal = {Kybernetika},
keywords = {DoS attack; event-triggered mechanism; cyber-physical system},
language = {eng},
number = {2},
pages = {340-362},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Event-triggered control of cyber-physical systems under asynchronous denial of service attacks},
url = {http://eudml.org/doc/297243},
volume = {56},
year = {2020},
}

TY - JOUR
AU - Peng, Huaye
AU - Peng, Chen
AU - Shao, Yong
AU - Zeng, Deliang
TI - Event-triggered control of cyber-physical systems under asynchronous denial of service attacks
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 2
SP - 340
EP - 362
AB - This paper addresses event-triggered control cyber-physical systems under asynchronous denial of service attacks. First, a general attack model is given, which allows us to conveniently model the asynchronous denial of service attacks within measurement and control channels in a unified framework. Then, under a delicate event triggered communication mechanism, a refined switching control mechanism is proposed to account for various attack intervals and non-attack intervals. Furthermore, sufficient conditions are derived for guaranteing the input to state stability (ISS) of the resulting closed-loop system. Finally, a simulation example of unmanned ground vehicle (UGV) is given to demonstrate the validity of the proposed main results.
LA - eng
KW - DoS attack; event-triggered mechanism; cyber-physical system
UR - http://eudml.org/doc/297243
ER -

References

top
  1. Amin, S., Schwartz, G. A., Sastry, S., 10.1016/j.automatica.2012.09.007, Automatica 49 (2013), 186-192. MR2999960DOI10.1016/j.automatica.2012.09.007
  2. Cardenas, A. A., Amin, S., al, S. Sastry et, 10.1109/icdcs.workshops.2008.40, In: Proc. 28th International Conference on Distributed Computing Systems Workshops, Beijing 2008, pp. 495-500. DOI10.1109/icdcs.workshops.2008.40
  3. Cetinkaya, A., Ishii, H., Hayakawa, T., 10.1109/tac.2016.2612818, IEEE Trans. Automat. Control 62 (2017), 2434-2449. MR3641456DOI10.1109/tac.2016.2612818
  4. Chang, Y. H., Hu, Q., Qie, Tomlin, C. J., 10.1016/j.automatica.2018.06.010, Automatica 95 (2018), 399-412. MR3851476DOI10.1016/j.automatica.2018.06.010
  5. Ding, D., Han, Q.-L., al, Z. Wang et, 10.1109/tii.2019.2905295, IEEE Trans. Industr. Inform. 15 (2019), 2483-2499. DOI10.1109/tii.2019.2905295
  6. Farwell, J. P., Rohozinski, R., 10.1080/00396338.2011.555586, Survival 53 (2011), 23-40. DOI10.1080/00396338.2011.555586
  7. Feng, S., Tesi, P., 10.1016/j.automatica.2017.01.031, Automatica 79 (2017), 42-51. MR3627964DOI10.1016/j.automatica.2017.01.031
  8. Ge, X., Han, Q.-L., Wang, Z., 10.1109/tcyb.2017.2789296, IEEE Trans. Cybernet. 49 (2019), 1148-1159. DOI10.1109/tcyb.2017.2789296
  9. Ge, X., Han, Q.-L., al, X.-M. Zhang et, 10.1109/tcyb.2019.2917179, IEEE Trans. Cybernet. 50 (2019), 3, 1306-1320 DOI10.1109/tcyb.2019.2917179
  10. Ge, X., Han, Q.-L., Zhong, M., Zhang, X.-M., 10.1016/j.automatica.2019.108557, Automatica 109 (2019), 108557. MR3998774DOI10.1016/j.automatica.2019.108557
  11. Heemels, W. P. M. H., Donkers, M. C. F., Teel, A. R., 10.1109/tac.2012.2220443, IEEE Trans. Automat. Control 58 (2013), 847-861. MR3038789DOI10.1109/tac.2012.2220443
  12. Hu, S., Yue, D., al, Q.-L. Han et, 10.1109/tcyb.2019.2903817, IEEE Trans. Cybernet. (2019), 1-13. MR3632431DOI10.1109/tcyb.2019.2903817
  13. Hu, S., Yue, D., Xie, X., Chen, X., Yin, X., 10.1109/tcyb.2018.2861834, IEEE Trans. Cybernet. 49 (2019), 4271-4281. DOI10.1109/tcyb.2018.2861834
  14. Kim, S., Won, Y., Park, I.-H., Eun, Y., Park, K.-J., 10.1109/jiot.2019.2919066, IEEE Internet Things J. 6 (2019), 6353-6362. DOI10.1109/jiot.2019.2919066
  15. Kwon, Ch., Hwang, I., 10.1049/iet-cta.2014.1013, IET Control Theory Appl. 10 (2016), 731-741. MR3525310DOI10.1049/iet-cta.2014.1013
  16. Liang, G., Weller, S. R., Zhao, J., Luo, F., Dong, Z. Y., 10.1109/tpwrs.2016.2631891, IEEE Trans. Power Syst. 32 (2017), 3317-3318. DOI10.1109/tpwrs.2016.2631891
  17. Liu, J., Yang, M., al, X. Xie et, Finite-time H filtering for state-dependent uncertain systems with event-triggered mechanism and multiple attacks., IEEE Trans. Circuits Systems I: Regular Papers /2019), 1-14.. MR4086773
  18. Lu, A.-Y., Yang, G.-H., 10.1109/tac.2017.2751999, IEEE Trans. Automat. Control 63 (2018), 1813-1820. MR3807663DOI10.1109/tac.2017.2751999
  19. Millan, P., Orihuela, L., al, I. Jurado et, 10.1080/00207721.2013.775387, Int. J. Systems Sci. 46 (2015), 139-151. MR3268947DOI10.1080/00207721.2013.775387
  20. Peng, C., Sun, H. T., 10.1109/tac.2020.2989773, IEEE Trans. Automat. Control (2020) MR4083387DOI10.1109/tac.2020.2989773
  21. Mo, Y., Weerakkody, S., Sinopoli, B., 10.1109/mcs.2014.2364724, IEEE Control Systems Mag. 35 (2015), 93-109. MR3311291DOI10.1109/mcs.2014.2364724
  22. Muehlebach, M., Trimpe, S., 10.1109/tac.2017.2726002, IEEE Trans. Automat. Control 63 (2018), 269-276. MR3744847DOI10.1109/tac.2017.2726002
  23. Pasqualetti, F., Dorfler, F., Bullo, F., 10.1109/tac.2013.2266831, IEEE Trans. Automat. Control 58 (2013), 2715-2729. MR3125984DOI10.1109/tac.2013.2266831
  24. Peng, C., Li, J., Fei, M., 10.1109/tpwrs.2016.2634122, IEEE Trans. Power Syst. 32 (2017), 4110-4118. DOI10.1109/tpwrs.2016.2634122
  25. Peng, C., Ma, S., Xie, X., 10.1109/tcyb.2017.2659698, IEEE Trans. Cybernet. 47 (2017), 2279-2287. DOI10.1109/tcyb.2017.2659698
  26. Peng, C., Sun, H., Yang, M., Wang, Y., 10.1109/tsmc.2018.2884952, IEEE Trans. Systems Man Cybernet.: Systems 49 (2019), 1554-1569. MR0697005DOI10.1109/tsmc.2018.2884952
  27. Persis, C. de, Tesi, P., 10.1109/tac.2015.2416924, IEEE Trans. Automat. Control 60 (2015), 2930-2944. MR3419582DOI10.1109/tac.2015.2416924
  28. Seuret, A., Gouaisbaut, F., 10.1016/j.automatica.2013.05.030, Automatica 49 (2013), 2860-2866. MR3084475DOI10.1016/j.automatica.2013.05.030
  29. Sun, Y.-Ch., Yang, G.-H., 10.1016/j.ins.2018.07.030, Inform. Sci. 465 (2018), 340-352. MR3846182DOI10.1016/j.ins.2018.07.030
  30. Tabuada, P., 10.1109/tac.2007.904277, IEEE Trans. Automat. Control 52 (2007), 1680-1685. MR2352444DOI10.1109/tac.2007.904277
  31. Do, L. Van, Fillatre, L., al, I. Nikiforov et, 10.1109/maes.2017.160047, IEEE Aerospace Electron. Systems Mag. 32 (2017), 28-45. DOI10.1109/maes.2017.160047
  32. Xiaon, S., Han, Q.-L., Ge, X., Zhang, Y., 10.1109/tcyb.2019.2900478, IEEE Trans. Cybernet. 50 (2019), 3, 1220-1229. DOI10.1109/tcyb.2019.2900478
  33. Xie, X., Yue, D., Peng, Ch., 10.1109/tfuzz.2018.2849701, IEEE Trans. Cybernet. 26 (2018), 3808-3819. DOI10.1109/tfuzz.2018.2849701
  34. Zhang, X.-M., Han, Q.-L., al, X. Ge et, 10.1109/JAS.2019.1911651, IEEE/CAA J. Automat. Sinica (2019), 1-17. MR3841465DOI10.1109/JAS.2019.1911651
  35. Zhang, X.-M., Han, Q.-L., al, X. Ge et, Resilient control design based on a sampled-data model for a class of networked control systems under denial-of-service attacks., IEEE Trans. Cybernet. (2019), 1-11. 
  36. Zhang, X.-M., Han, Q.-L., Seuret, A., Gouaisbaut, F., 10.1016/j.automatica.2017.04.048, Automatica 84 (2017), 221-226. MR3689887DOI10.1016/j.automatica.2017.04.048

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.