On tangent cones to Schubert varieties in type E

Mikhail V. Ignatyev; Aleksandr A. Shevchenko

Communications in Mathematics (2020)

  • Volume: 28, Issue: 2, page 179-197
  • ISSN: 1804-1388

Abstract

top
We consider tangent cones to Schubert subvarieties of the flag variety G / B , where B is a Borel subgroup of a reductive complex algebraic group G of type E 6 , E 7 or E 8 . We prove that if w 1 and w 2 form a good pair of involutions in the Weyl group W of G then the tangent cones C w 1 and C w 2 to the corresponding Schubert subvarieties of G / B do not coincide as subschemes of the tangent space to G / B at the neutral point.

How to cite

top

Ignatyev, Mikhail V., and Shevchenko, Aleksandr A.. "On tangent cones to Schubert varieties in type $E$." Communications in Mathematics 28.2 (2020): 179-197. <http://eudml.org/doc/297247>.

@article{Ignatyev2020,
abstract = {We consider tangent cones to Schubert subvarieties of the flag variety $G/B$, where $B$ is a Borel subgroup of a reductive complex algebraic group $G$ of type $E_6$, $E_7$ or $E_8$. We prove that if $w_1$ and $w_2$ form a good pair of involutions in the Weyl group $W$ of $G$ then the tangent cones $C_\{w_1\}$ and $C_\{w_2\}$ to the corresponding Schubert subvarieties of $G/B$ do not coincide as subschemes of the tangent space to $G/B$ at the neutral point.},
author = {Ignatyev, Mikhail V., Shevchenko, Aleksandr A.},
journal = {Communications in Mathematics},
keywords = {flag variety; Schubert variety; tangent cone; involution in the Weyl group; Kostant-Kumar polynomial},
language = {eng},
number = {2},
pages = {179-197},
publisher = {University of Ostrava},
title = {On tangent cones to Schubert varieties in type $E$},
url = {http://eudml.org/doc/297247},
volume = {28},
year = {2020},
}

TY - JOUR
AU - Ignatyev, Mikhail V.
AU - Shevchenko, Aleksandr A.
TI - On tangent cones to Schubert varieties in type $E$
JO - Communications in Mathematics
PY - 2020
PB - University of Ostrava
VL - 28
IS - 2
SP - 179
EP - 197
AB - We consider tangent cones to Schubert subvarieties of the flag variety $G/B$, where $B$ is a Borel subgroup of a reductive complex algebraic group $G$ of type $E_6$, $E_7$ or $E_8$. We prove that if $w_1$ and $w_2$ form a good pair of involutions in the Weyl group $W$ of $G$ then the tangent cones $C_{w_1}$ and $C_{w_2}$ to the corresponding Schubert subvarieties of $G/B$ do not coincide as subschemes of the tangent space to $G/B$ at the neutral point.
LA - eng
KW - flag variety; Schubert variety; tangent cone; involution in the Weyl group; Kostant-Kumar polynomial
UR - http://eudml.org/doc/297247
ER -

References

top
  1. Billey, S.C., 10.1215/S0012-7094-99-09606-0, Duke Mathematical Journal, 96, 1, 1999, 205-224, Citeseer, (1999) MR1663931DOI10.1215/S0012-7094-99-09606-0
  2. Bjorner, A., Brenti, F., Combinatorics of Coxeter groups, 231, 2005, Springer Science & Business Media, Graduate Texts in Mathematics {231}. (2005) MR2133266
  3. Bochkarev, M.A., Ignatyev, M.V., Shevchenko, A.A., 10.1016/j.jalgebra.2016.07.015, Journal of Algebra, 465, 2016, 259-286, Elsevier, (2016) MR3537823DOI10.1016/j.jalgebra.2016.07.015
  4. Bourbaki, N., Lie groups and Lie algebras. Chapters 4--6, 2002, Springer-Verlag, Berlin, Translated from the 1968 French original. (2002) MR1890629
  5. Sarason, I.G., Billey, S., Sarason, S., Lakshmibai, V., Singular loci of Schubert varieties, 182, 2000, Springer Science & Business Media, (2000) MR1782635
  6. Deodhar, V.V., 10.1080/00927878208822738, Communications in Algebra, 10, 6, 1982, 611-630, Taylor & Francis, (1982) MR0647210DOI10.1080/00927878208822738
  7. Dyer, M.J., 10.1007/BF01231299, Inventiones Mathematicae, 111, 1, 1993, 571-574, Springer, (1993) MR1202136DOI10.1007/BF01231299
  8. Eliseev, D.Yu., Panov, A.N., Tangent cones of Schubert varieties for A n of lower rank (in Russian), Zapiski Nauchnykh Seminarov POMI, 394, 2011, 218-225, St. Petersburg Department of Steklov Institute of Mathematics, Russian, English transl.: Journal of Mathematical Sciences 188 (5) (2013), 596--600.. (2011) MR2870177
  9. Eliseev, D.Yu., Ignatyev, M.V., Kostant-Kumar polynomials and tangent cones to Schubert varieties for involutions in A n , F 4 and G 2 (in Russian), Zapiski Nauchnykh Seminarov POMI, 414, 2013, 82-105, Springer, English transl.: Journal of Mathematical Sciences {199} (3) (2014), 289--301.. (2013) MR3470596
  10. Humphreys, J.E., Linear algebraic groups, 1975, Springer, (1975) MR0396773
  11. Humphreys, J.E., Reflection groups and Coxeter groups, 1992, Cambridge University Press, (1992) MR1066460
  12. Ignatyev, M.V., Shevchenko, A.A., On tangent cones to Schubert varieties in type D n (in Russian), Algebra i Analiz, 27, 4, 2015, 28-49, English transl.: St. Petersburg Mathematical Journal 27 (4) (2016), 609--623.. (2015) MR3580190
  13. Kostant, B., Kumar, S., The nil Hecke ring and cohomology of G / P for a Kac-Moody group G , Proceedings of the National Academy of Sciences, 83, 6, 1986, 1543-1545, National Acad Sciences, (1986) MR0831908
  14. Kostant, B., Kumar, S., T -equivariant K -theory of generalized flag varieties, Journal of Differential Geometry, 32, 2, 1990, 549-603, Lehigh University, (1990) MR1072919
  15. Kumar, S., 10.1007/BF01232388, Inventiones Mathematicae, 123, 3, 1996, 471-506, Springer, (1996) MR1383959DOI10.1007/BF01232388
  16. Springer, T.A., 10.1080/00927878208822739, Communications in Algebra, 10, 6, 1982, 631-636, Taylor & Francis, (1982) MR0647211DOI10.1080/00927878208822739
  17. al., W.A. Stein et, Sage Mathematics Software (Version 9.1), 2020, The Sage {Development} Team, Available at {http://www.sagemath.org}. (2020) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.