On tangent cones to Schubert varieties in type
Mikhail V. Ignatyev; Aleksandr A. Shevchenko
Communications in Mathematics (2020)
- Volume: 28, Issue: 2, page 179-197
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topIgnatyev, Mikhail V., and Shevchenko, Aleksandr A.. "On tangent cones to Schubert varieties in type $E$." Communications in Mathematics 28.2 (2020): 179-197. <http://eudml.org/doc/297247>.
@article{Ignatyev2020,
abstract = {We consider tangent cones to Schubert subvarieties of the flag variety $G/B$, where $B$ is a Borel subgroup of a reductive complex algebraic group $G$ of type $E_6$, $E_7$ or $E_8$. We prove that if $w_1$ and $w_2$ form a good pair of involutions in the Weyl group $W$ of $G$ then the tangent cones $C_\{w_1\}$ and $C_\{w_2\}$ to the corresponding Schubert subvarieties of $G/B$ do not coincide as subschemes of the tangent space to $G/B$ at the neutral point.},
author = {Ignatyev, Mikhail V., Shevchenko, Aleksandr A.},
journal = {Communications in Mathematics},
keywords = {flag variety; Schubert variety; tangent cone; involution in the Weyl group; Kostant-Kumar polynomial},
language = {eng},
number = {2},
pages = {179-197},
publisher = {University of Ostrava},
title = {On tangent cones to Schubert varieties in type $E$},
url = {http://eudml.org/doc/297247},
volume = {28},
year = {2020},
}
TY - JOUR
AU - Ignatyev, Mikhail V.
AU - Shevchenko, Aleksandr A.
TI - On tangent cones to Schubert varieties in type $E$
JO - Communications in Mathematics
PY - 2020
PB - University of Ostrava
VL - 28
IS - 2
SP - 179
EP - 197
AB - We consider tangent cones to Schubert subvarieties of the flag variety $G/B$, where $B$ is a Borel subgroup of a reductive complex algebraic group $G$ of type $E_6$, $E_7$ or $E_8$. We prove that if $w_1$ and $w_2$ form a good pair of involutions in the Weyl group $W$ of $G$ then the tangent cones $C_{w_1}$ and $C_{w_2}$ to the corresponding Schubert subvarieties of $G/B$ do not coincide as subschemes of the tangent space to $G/B$ at the neutral point.
LA - eng
KW - flag variety; Schubert variety; tangent cone; involution in the Weyl group; Kostant-Kumar polynomial
UR - http://eudml.org/doc/297247
ER -
References
top- Billey, S.C., 10.1215/S0012-7094-99-09606-0, Duke Mathematical Journal, 96, 1, 1999, 205-224, Citeseer, (1999) MR1663931DOI10.1215/S0012-7094-99-09606-0
- Bjorner, A., Brenti, F., Combinatorics of Coxeter groups, 231, 2005, Springer Science & Business Media, Graduate Texts in Mathematics {231}. (2005) MR2133266
- Bochkarev, M.A., Ignatyev, M.V., Shevchenko, A.A., 10.1016/j.jalgebra.2016.07.015, Journal of Algebra, 465, 2016, 259-286, Elsevier, (2016) MR3537823DOI10.1016/j.jalgebra.2016.07.015
- Bourbaki, N., Lie groups and Lie algebras. Chapters 4--6, 2002, Springer-Verlag, Berlin, Translated from the 1968 French original. (2002) MR1890629
- Sarason, I.G., Billey, S., Sarason, S., Lakshmibai, V., Singular loci of Schubert varieties, 182, 2000, Springer Science & Business Media, (2000) MR1782635
- Deodhar, V.V., 10.1080/00927878208822738, Communications in Algebra, 10, 6, 1982, 611-630, Taylor & Francis, (1982) MR0647210DOI10.1080/00927878208822738
- Dyer, M.J., 10.1007/BF01231299, Inventiones Mathematicae, 111, 1, 1993, 571-574, Springer, (1993) MR1202136DOI10.1007/BF01231299
- Eliseev, D.Yu., Panov, A.N., Tangent cones of Schubert varieties for of lower rank (in Russian), Zapiski Nauchnykh Seminarov POMI, 394, 2011, 218-225, St. Petersburg Department of Steklov Institute of Mathematics, Russian, English transl.: Journal of Mathematical Sciences 188 (5) (2013), 596--600.. (2011) MR2870177
- Eliseev, D.Yu., Ignatyev, M.V., Kostant-Kumar polynomials and tangent cones to Schubert varieties for involutions in , and (in Russian), Zapiski Nauchnykh Seminarov POMI, 414, 2013, 82-105, Springer, English transl.: Journal of Mathematical Sciences {199} (3) (2014), 289--301.. (2013) MR3470596
- Humphreys, J.E., Linear algebraic groups, 1975, Springer, (1975) MR0396773
- Humphreys, J.E., Reflection groups and Coxeter groups, 1992, Cambridge University Press, (1992) MR1066460
- Ignatyev, M.V., Shevchenko, A.A., On tangent cones to Schubert varieties in type (in Russian), Algebra i Analiz, 27, 4, 2015, 28-49, English transl.: St. Petersburg Mathematical Journal 27 (4) (2016), 609--623.. (2015) MR3580190
- Kostant, B., Kumar, S., The nil Hecke ring and cohomology of for a Kac-Moody group , Proceedings of the National Academy of Sciences, 83, 6, 1986, 1543-1545, National Acad Sciences, (1986) MR0831908
- Kostant, B., Kumar, S., -equivariant -theory of generalized flag varieties, Journal of Differential Geometry, 32, 2, 1990, 549-603, Lehigh University, (1990) MR1072919
- Kumar, S., 10.1007/BF01232388, Inventiones Mathematicae, 123, 3, 1996, 471-506, Springer, (1996) MR1383959DOI10.1007/BF01232388
- Springer, T.A., 10.1080/00927878208822739, Communications in Algebra, 10, 6, 1982, 631-636, Taylor & Francis, (1982) MR0647211DOI10.1080/00927878208822739
- al., W.A. Stein et, Sage Mathematics Software (Version 9.1), 2020, The Sage {Development} Team, Available at {http://www.sagemath.org}. (2020)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.