Eigenvalue bounds for some classes of matrices associated with graphs
Ranjit Mehatari; M. Rajesh Kannan
Czechoslovak Mathematical Journal (2021)
- Issue: 1, page 231-251
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMehatari, Ranjit, and Kannan, M. Rajesh. "Eigenvalue bounds for some classes of matrices associated with graphs." Czechoslovak Mathematical Journal (2021): 231-251. <http://eudml.org/doc/297249>.
@article{Mehatari2021,
abstract = {For a given complex square matrix $A$ with constant row sum, we establish two new eigenvalue inclusion sets. Using these bounds, first, we derive bounds for the second largest and the smallest eigenvalues of adjacency matrices of $k$-regular graphs. Then we establish some bounds for the second largest and the smallest eigenvalues of the normalized adjacency matrices of graphs and the second smallest and the largest eigenvalues of the Laplacian matrices of graphs. The sharpness of these bounds is verified by examples.},
author = {Mehatari, Ranjit, Kannan, M. Rajesh},
journal = {Czechoslovak Mathematical Journal},
keywords = {adjacency matrix; Laplacian matrix; normalized adjacency matrix; spectral radius; algebraic connectivity; Randić index},
language = {eng},
number = {1},
pages = {231-251},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Eigenvalue bounds for some classes of matrices associated with graphs},
url = {http://eudml.org/doc/297249},
year = {2021},
}
TY - JOUR
AU - Mehatari, Ranjit
AU - Kannan, M. Rajesh
TI - Eigenvalue bounds for some classes of matrices associated with graphs
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 231
EP - 251
AB - For a given complex square matrix $A$ with constant row sum, we establish two new eigenvalue inclusion sets. Using these bounds, first, we derive bounds for the second largest and the smallest eigenvalues of adjacency matrices of $k$-regular graphs. Then we establish some bounds for the second largest and the smallest eigenvalues of the normalized adjacency matrices of graphs and the second smallest and the largest eigenvalues of the Laplacian matrices of graphs. The sharpness of these bounds is verified by examples.
LA - eng
KW - adjacency matrix; Laplacian matrix; normalized adjacency matrix; spectral radius; algebraic connectivity; Randić index
UR - http://eudml.org/doc/297249
ER -
References
top- Banerjee, A., Mehatari, R., 10.1016/j.laa.2016.04.023, Linear Algebra Appl. 505 (2016), 85-96. (2016) Zbl1338.15069MR3506485DOI10.1016/j.laa.2016.04.023
- Bollobás, B., Erdös, P., Graphs of extremal weights, Ars Comb. 50 (1998), 225-233. (1998) Zbl0963.05068MR1670561
- Bondy, J. A., Murty, U. S. R., Graph Theory with Applications, American Elsevier, New York (1976). (1976) Zbl1226.05083MR0411988
- Bozkurt, Ş. B., Güngör, A. D., Gutman, I., Çevik, A. S., Randić matrix and Randić energy, MATCH Commun. Math. Comput. Chem. 64 (2010), 239-250. (2010) Zbl1265.05113MR2677585
- Brouwer, A. E., Haemers, W. H., 10.1007/978-1-4614-1939-6, Universitext. Springer, Berlin (2012). (2012) Zbl1231.05001MR2882891DOI10.1007/978-1-4614-1939-6
- Butler, S., Chung, F., Spectral graph theory, Handbook of Linear Algebra L. Hogben Discrete Mathematics and its Applications. CRC Press, Boca Raton (2014), Article ID 47. (2014) Zbl1284.15001MR3013937
- Cavers, M. S., The normalized Laplacian matrix and general Randić index of graphs: Ph.D. Thesis, University of Regina, Regina (2010). (2010) MR3078627
- Chung, F. R. K., Spectral Graph Theory, Regional Conference Series in Mathematics 92. American Mathematical Society, Providence (1997). (1997) Zbl0867.05046MR1421568
- Cvetković, D., Doob, M., Sachs, H., Spectra of Graphs: Theory and Applications, Pure and Applied Mathematics 87. Academic Press, New York (1980). (1980) Zbl0458.05042MR0572262
- Das, K. C., 10.1007/s00373-007-0758-4, Graphs Comb. 23 (2007), 625-632. (2007) Zbl1139.05032MR2365415DOI10.1007/s00373-007-0758-4
- Fiedler, M., 10.21136/CMJ.1973.101168, Czech. Math. J. 23 (1973), 298-305. (1973) Zbl0265.05119MR0318007DOI10.21136/CMJ.1973.101168
- Li, J., Guo, J-M., Shiu, W. C., 10.1186/1029-242X-2014-316, J. Inequal. Appl. 316 (2014), Article ID 316, 8 pages. (2014) Zbl1332.05090MR3344113DOI10.1186/1029-242X-2014-316
- Marsli, R., Hall, F. J., 10.1080/03081087.2018.1430736, Linear Multilinear Algebra 67 (2019), 672-684. (2019) Zbl1412.15020MR3914323DOI10.1080/03081087.2018.1430736
- Randić, M., 10.1021/ja00856a001, J. Am. Chem. Soc. 97 (1975), 6609-6615. (1975) DOI10.1021/ja00856a001
- Rojo, O., Soto, R. L., 10.7153/oam-07-19, Oper. Matrices 7 (2013), 323-332. (2013) Zbl1283.05168MR3099188DOI10.7153/oam-07-19
- Stanić, Z., 10.1017/CBO9781316341308, London Mathematical Society Lecture Note Series 423. Cambridge University Press, Cambridge (2015). (2015) Zbl1368.05001MR3469535DOI10.1017/CBO9781316341308
- Varga, R. S., 10.1007/978-3-642-17798-9, Springer Series in Computational Mathematics 36. Springer, Berlin (2004). (2004) Zbl1057.15023MR2093409DOI10.1007/978-3-642-17798-9
- Wolkowicz, H., Styan, G. P. H., 10.1016/0024-3795(80)90258-X, Linear Algebra Appl. 29 (1980), 471-506. (1980) Zbl0435.15015MR0562777DOI10.1016/0024-3795(80)90258-X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.