Eigenvalue bounds for some classes of matrices associated with graphs

Ranjit Mehatari; M. Rajesh Kannan

Czechoslovak Mathematical Journal (2021)

  • Issue: 1, page 231-251
  • ISSN: 0011-4642

Abstract

top
For a given complex square matrix A with constant row sum, we establish two new eigenvalue inclusion sets. Using these bounds, first, we derive bounds for the second largest and the smallest eigenvalues of adjacency matrices of k -regular graphs. Then we establish some bounds for the second largest and the smallest eigenvalues of the normalized adjacency matrices of graphs and the second smallest and the largest eigenvalues of the Laplacian matrices of graphs. The sharpness of these bounds is verified by examples.

How to cite

top

Mehatari, Ranjit, and Kannan, M. Rajesh. "Eigenvalue bounds for some classes of matrices associated with graphs." Czechoslovak Mathematical Journal (2021): 231-251. <http://eudml.org/doc/297249>.

@article{Mehatari2021,
abstract = {For a given complex square matrix $A$ with constant row sum, we establish two new eigenvalue inclusion sets. Using these bounds, first, we derive bounds for the second largest and the smallest eigenvalues of adjacency matrices of $k$-regular graphs. Then we establish some bounds for the second largest and the smallest eigenvalues of the normalized adjacency matrices of graphs and the second smallest and the largest eigenvalues of the Laplacian matrices of graphs. The sharpness of these bounds is verified by examples.},
author = {Mehatari, Ranjit, Kannan, M. Rajesh},
journal = {Czechoslovak Mathematical Journal},
keywords = {adjacency matrix; Laplacian matrix; normalized adjacency matrix; spectral radius; algebraic connectivity; Randić index},
language = {eng},
number = {1},
pages = {231-251},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Eigenvalue bounds for some classes of matrices associated with graphs},
url = {http://eudml.org/doc/297249},
year = {2021},
}

TY - JOUR
AU - Mehatari, Ranjit
AU - Kannan, M. Rajesh
TI - Eigenvalue bounds for some classes of matrices associated with graphs
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 231
EP - 251
AB - For a given complex square matrix $A$ with constant row sum, we establish two new eigenvalue inclusion sets. Using these bounds, first, we derive bounds for the second largest and the smallest eigenvalues of adjacency matrices of $k$-regular graphs. Then we establish some bounds for the second largest and the smallest eigenvalues of the normalized adjacency matrices of graphs and the second smallest and the largest eigenvalues of the Laplacian matrices of graphs. The sharpness of these bounds is verified by examples.
LA - eng
KW - adjacency matrix; Laplacian matrix; normalized adjacency matrix; spectral radius; algebraic connectivity; Randić index
UR - http://eudml.org/doc/297249
ER -

References

top
  1. Banerjee, A., Mehatari, R., 10.1016/j.laa.2016.04.023, Linear Algebra Appl. 505 (2016), 85-96. (2016) Zbl1338.15069MR3506485DOI10.1016/j.laa.2016.04.023
  2. Bollobás, B., Erdös, P., Graphs of extremal weights, Ars Comb. 50 (1998), 225-233. (1998) Zbl0963.05068MR1670561
  3. Bondy, J. A., Murty, U. S. R., Graph Theory with Applications, American Elsevier, New York (1976). (1976) Zbl1226.05083MR0411988
  4. Bozkurt, Ş. B., Güngör, A. D., Gutman, I., Çevik, A. S., Randić matrix and Randić energy, MATCH Commun. Math. Comput. Chem. 64 (2010), 239-250. (2010) Zbl1265.05113MR2677585
  5. Brouwer, A. E., Haemers, W. H., 10.1007/978-1-4614-1939-6, Universitext. Springer, Berlin (2012). (2012) Zbl1231.05001MR2882891DOI10.1007/978-1-4614-1939-6
  6. Butler, S., Chung, F., Spectral graph theory, Handbook of Linear Algebra L. Hogben Discrete Mathematics and its Applications. CRC Press, Boca Raton (2014), Article ID 47. (2014) Zbl1284.15001MR3013937
  7. Cavers, M. S., The normalized Laplacian matrix and general Randić index of graphs: Ph.D. Thesis, University of Regina, Regina (2010). (2010) MR3078627
  8. Chung, F. R. K., Spectral Graph Theory, Regional Conference Series in Mathematics 92. American Mathematical Society, Providence (1997). (1997) Zbl0867.05046MR1421568
  9. Cvetković, D., Doob, M., Sachs, H., Spectra of Graphs: Theory and Applications, Pure and Applied Mathematics 87. Academic Press, New York (1980). (1980) Zbl0458.05042MR0572262
  10. Das, K. C., 10.1007/s00373-007-0758-4, Graphs Comb. 23 (2007), 625-632. (2007) Zbl1139.05032MR2365415DOI10.1007/s00373-007-0758-4
  11. Fiedler, M., 10.21136/CMJ.1973.101168, Czech. Math. J. 23 (1973), 298-305. (1973) Zbl0265.05119MR0318007DOI10.21136/CMJ.1973.101168
  12. Li, J., Guo, J-M., Shiu, W. C., 10.1186/1029-242X-2014-316, J. Inequal. Appl. 316 (2014), Article ID 316, 8 pages. (2014) Zbl1332.05090MR3344113DOI10.1186/1029-242X-2014-316
  13. Marsli, R., Hall, F. J., 10.1080/03081087.2018.1430736, Linear Multilinear Algebra 67 (2019), 672-684. (2019) Zbl1412.15020MR3914323DOI10.1080/03081087.2018.1430736
  14. Randić, M., 10.1021/ja00856a001, J. Am. Chem. Soc. 97 (1975), 6609-6615. (1975) DOI10.1021/ja00856a001
  15. Rojo, O., Soto, R. L., 10.7153/oam-07-19, Oper. Matrices 7 (2013), 323-332. (2013) Zbl1283.05168MR3099188DOI10.7153/oam-07-19
  16. Stanić, Z., 10.1017/CBO9781316341308, London Mathematical Society Lecture Note Series 423. Cambridge University Press, Cambridge (2015). (2015) Zbl1368.05001MR3469535DOI10.1017/CBO9781316341308
  17. Varga, R. S., 10.1007/978-3-642-17798-9, Springer Series in Computational Mathematics 36. Springer, Berlin (2004). (2004) Zbl1057.15023MR2093409DOI10.1007/978-3-642-17798-9
  18. Wolkowicz, H., Styan, G. P. H., 10.1016/0024-3795(80)90258-X, Linear Algebra Appl. 29 (1980), 471-506. (1980) Zbl0435.15015MR0562777DOI10.1016/0024-3795(80)90258-X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.