Noncompact perturbation of nonconvex noncompact sweeping process with delay
Mohammed S. Abdo; Ahmed G. Ibrahim; Satish K. Panchal
Commentationes Mathematicae Universitatis Carolinae (2020)
- Volume: 61, Issue: 2, page 165-186
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAbdo, Mohammed S., Ibrahim, Ahmed G., and Panchal, Satish K.. "Noncompact perturbation of nonconvex noncompact sweeping process with delay." Commentationes Mathematicae Universitatis Carolinae 61.2 (2020): 165-186. <http://eudml.org/doc/297256>.
@article{Abdo2020,
abstract = {We prove an existence theorem of solutions for a nonconvex sweeping process with nonconvex noncompact perturbation in Hilbert space. We do not assume that the values of the orient field are compact.},
author = {Abdo, Mohammed S., Ibrahim, Ahmed G., Panchal, Satish K.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {nonconvex sweeping process; functional differential inclusion; uniformly $\varrho $-prox-regular set},
language = {eng},
number = {2},
pages = {165-186},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Noncompact perturbation of nonconvex noncompact sweeping process with delay},
url = {http://eudml.org/doc/297256},
volume = {61},
year = {2020},
}
TY - JOUR
AU - Abdo, Mohammed S.
AU - Ibrahim, Ahmed G.
AU - Panchal, Satish K.
TI - Noncompact perturbation of nonconvex noncompact sweeping process with delay
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 2
SP - 165
EP - 186
AB - We prove an existence theorem of solutions for a nonconvex sweeping process with nonconvex noncompact perturbation in Hilbert space. We do not assume that the values of the orient field are compact.
LA - eng
KW - nonconvex sweeping process; functional differential inclusion; uniformly $\varrho $-prox-regular set
UR - http://eudml.org/doc/297256
ER -
References
top- Abdo M. S., Ibrahim A. G., Panchal S. K., State-dependent delayed sweeping process with a noncompact perturbation in Banach spaces, Acta Univ. Apulensis Math. Inform. 54 (2018), 139–159. MR3830496
- Aitalioubrahim M., On noncompact perturbation of nonconvex sweeping process, Comment. Math. Univ. Carolin. 53 (2012) no. 1, 65–77. MR2880911
- Aubin J.-P., Cellina A., 10.1007/978-3-642-69512-4, Grundlehren der Mathematischen Wissenschaften, 264, Springer, Berlin, 1984. MR0755330DOI10.1007/978-3-642-69512-4
- Bounkhel M., Castaing C., State dependent sweeping process in -uniformly smooth and -niformly convex Banach spaces, Set-Valued Var. Anal. 20 (2012), no. 2, 187–201. MR2913675
- Bounkhel M., Thibault L., Nonconvex sweeping process and prox-regularity in Hilbert space, J. Nonlinear Convex Anal. 6 (2005), no. 2, 359–374. Zbl1086.49016MR2159846
- Castaing C., Monteiro Marques M. D. P., Topological properties of solution sets for sweeping processes with delay, Portugal. Math. 54 (1997), no. 4, 485–507. MR1489988
- Castaing C., Valadier M., 10.1007/BFb0087688, Lectures Notes in Mathematics, 580, Springer, Berlin, 1977. Zbl0346.46038MR0467310DOI10.1007/BFb0087688
- Clarke F. H., Stern R. J., Wolenski P. R., Proximal smoothness and the lower- property, J. Convex Anal. 2 (1995), no. 1–2, 117–144. MR1363364
- Edmond J. F., 10.1007/s11228-006-0021-9, Set-Valued Anal. 14 (2006), no. 3, 295–317. Zbl1122.34060MR2252653DOI10.1007/s11228-006-0021-9
- Edmond J. F., Thibault L., 10.1007/s10107-005-0619-y, Math. Program. 104 (2005), no. 2–3, Ser. B, 347–373. MR2179241DOI10.1007/s10107-005-0619-y
- Edmond J. F., Thibault L., 10.1016/j.jde.2005.12.005, J. Differential Equations 226 (2006), no. 1, 135–179. MR2232433DOI10.1016/j.jde.2005.12.005
- Haddad T., Thibault L., 10.1007/s10107-009-0315-4, Math. Program. 123 (2010), no. 1, Ser. B, 225–240. MR2577329DOI10.1007/s10107-009-0315-4
- Moreau J. J., Application of convex analysis to the treatment of elastoplastic systems, Applications of Methods of Functional Analysis to Problems in Mechanics, Lecture Notes in Mathematics, 503, Springer, Berlin, 1976, 56–89.
- Moreau J.-J., 10.1016/0022-0396(77)90085-7, J. Differential Equations 26 (1977), no. 3, 347–374. MR0508661DOI10.1016/0022-0396(77)90085-7
- Moreau J. J., Unilateral contact and dry friction in finite freedom dynamics, Nonsmooth Mechanics and Applications, International Centre for Mechanical Sciences (CISM), 302, Springer, Vienna, 1988, 1–82. Zbl0703.73070
- Sene M., Thibault L., Regularization of dynamical systems associated with prox-regular moving sets, J. Nonlinear Convex Anal. 15 (2014), no. 4, 647–663. MR3222899
- Poliquin R. A., Rockafellar R. T., Thibault L., 10.1090/S0002-9947-00-02550-2, Trans. Amer. Math. Soc. 352 (2000), no. 11, 5231–5249. Zbl0960.49018MR1694378DOI10.1090/S0002-9947-00-02550-2
- Thibault L., 10.1016/S0022-0396(03)00129-3, J. Differential Equations 193 (2003), no. 1, 1–26. Zbl1037.34007MR1994056DOI10.1016/S0022-0396(03)00129-3
- Zhu Q. J., 10.1016/0022-0396(91)90011-W, J. Differential Equations 93 (1991), no. 2, 213–237. Zbl0735.34017MR1125218DOI10.1016/0022-0396(91)90011-W
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.