Noncompact perturbation of nonconvex noncompact sweeping process with delay

Mohammed S. Abdo; Ahmed G. Ibrahim; Satish K. Panchal

Commentationes Mathematicae Universitatis Carolinae (2020)

  • Volume: 61, Issue: 2, page 165-186
  • ISSN: 0010-2628

Abstract

top
We prove an existence theorem of solutions for a nonconvex sweeping process with nonconvex noncompact perturbation in Hilbert space. We do not assume that the values of the orient field are compact.

How to cite

top

Abdo, Mohammed S., Ibrahim, Ahmed G., and Panchal, Satish K.. "Noncompact perturbation of nonconvex noncompact sweeping process with delay." Commentationes Mathematicae Universitatis Carolinae 61.2 (2020): 165-186. <http://eudml.org/doc/297256>.

@article{Abdo2020,
abstract = {We prove an existence theorem of solutions for a nonconvex sweeping process with nonconvex noncompact perturbation in Hilbert space. We do not assume that the values of the orient field are compact.},
author = {Abdo, Mohammed S., Ibrahim, Ahmed G., Panchal, Satish K.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {nonconvex sweeping process; functional differential inclusion; uniformly $\varrho $-prox-regular set},
language = {eng},
number = {2},
pages = {165-186},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Noncompact perturbation of nonconvex noncompact sweeping process with delay},
url = {http://eudml.org/doc/297256},
volume = {61},
year = {2020},
}

TY - JOUR
AU - Abdo, Mohammed S.
AU - Ibrahim, Ahmed G.
AU - Panchal, Satish K.
TI - Noncompact perturbation of nonconvex noncompact sweeping process with delay
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 2
SP - 165
EP - 186
AB - We prove an existence theorem of solutions for a nonconvex sweeping process with nonconvex noncompact perturbation in Hilbert space. We do not assume that the values of the orient field are compact.
LA - eng
KW - nonconvex sweeping process; functional differential inclusion; uniformly $\varrho $-prox-regular set
UR - http://eudml.org/doc/297256
ER -

References

top
  1. Abdo M. S., Ibrahim A. G., Panchal S. K., State-dependent delayed sweeping process with a noncompact perturbation in Banach spaces, Acta Univ. Apulensis Math. Inform. 54 (2018), 139–159. MR3830496
  2. Aitalioubrahim M., On noncompact perturbation of nonconvex sweeping process, Comment. Math. Univ. Carolin. 53 (2012) no. 1, 65–77. MR2880911
  3. Aubin J.-P., Cellina A., 10.1007/978-3-642-69512-4, Grundlehren der Mathematischen Wissenschaften, 264, Springer, Berlin, 1984. MR0755330DOI10.1007/978-3-642-69512-4
  4. Bounkhel M., Castaing C., State dependent sweeping process in p -uniformly smooth and q -niformly convex Banach spaces, Set-Valued Var. Anal. 20 (2012), no. 2, 187–201. MR2913675
  5. Bounkhel M., Thibault L., Nonconvex sweeping process and prox-regularity in Hilbert space, J. Nonlinear Convex Anal. 6 (2005), no. 2, 359–374. Zbl1086.49016MR2159846
  6. Castaing C., Monteiro Marques M. D. P., Topological properties of solution sets for sweeping processes with delay, Portugal. Math. 54 (1997), no. 4, 485–507. MR1489988
  7. Castaing C., Valadier M., 10.1007/BFb0087688, Lectures Notes in Mathematics, 580, Springer, Berlin, 1977. Zbl0346.46038MR0467310DOI10.1007/BFb0087688
  8. Clarke F. H., Stern R. J., Wolenski P. R., Proximal smoothness and the lower- C 2 property, J. Convex Anal. 2 (1995), no. 1–2, 117–144. MR1363364
  9. Edmond J. F., 10.1007/s11228-006-0021-9, Set-Valued Anal. 14 (2006), no. 3, 295–317. Zbl1122.34060MR2252653DOI10.1007/s11228-006-0021-9
  10. Edmond J. F., Thibault L., 10.1007/s10107-005-0619-y, Math. Program. 104 (2005), no. 2–3, Ser. B, 347–373. MR2179241DOI10.1007/s10107-005-0619-y
  11. Edmond J. F., Thibault L., 10.1016/j.jde.2005.12.005, J. Differential Equations 226 (2006), no. 1, 135–179. MR2232433DOI10.1016/j.jde.2005.12.005
  12. Haddad T., Thibault L., 10.1007/s10107-009-0315-4, Math. Program. 123 (2010), no. 1, Ser. B, 225–240. MR2577329DOI10.1007/s10107-009-0315-4
  13. Moreau J. J., Application of convex analysis to the treatment of elastoplastic systems, Applications of Methods of Functional Analysis to Problems in Mechanics, Lecture Notes in Mathematics, 503, Springer, Berlin, 1976, 56–89. 
  14. Moreau J.-J., 10.1016/0022-0396(77)90085-7, J. Differential Equations 26 (1977), no. 3, 347–374. MR0508661DOI10.1016/0022-0396(77)90085-7
  15. Moreau J. J., Unilateral contact and dry friction in finite freedom dynamics, Nonsmooth Mechanics and Applications, International Centre for Mechanical Sciences (CISM), 302, Springer, Vienna, 1988, 1–82. Zbl0703.73070
  16. Sene M., Thibault L., Regularization of dynamical systems associated with prox-regular moving sets, J. Nonlinear Convex Anal. 15 (2014), no. 4, 647–663. MR3222899
  17. Poliquin R. A., Rockafellar R. T., Thibault L., 10.1090/S0002-9947-00-02550-2, Trans. Amer. Math. Soc. 352 (2000), no. 11, 5231–5249. Zbl0960.49018MR1694378DOI10.1090/S0002-9947-00-02550-2
  18. Thibault L., 10.1016/S0022-0396(03)00129-3, J. Differential Equations 193 (2003), no. 1, 1–26. Zbl1037.34007MR1994056DOI10.1016/S0022-0396(03)00129-3
  19. Zhu Q. J., 10.1016/0022-0396(91)90011-W, J. Differential Equations 93 (1991), no. 2, 213–237. Zbl0735.34017MR1125218DOI10.1016/0022-0396(91)90011-W

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.