The operation A B A in operator algebras

Marcell Gaál

Commentationes Mathematicae Universitatis Carolinae (2020)

  • Volume: 61, Issue: 4, page 513-521
  • ISSN: 0010-2628

Abstract

top
The binary operation a b a , called Jordan triple product, and its variants (such as e.g. the sequential product a b a or the inverted Jordan triple product a b - 1 a ) appear in several branches of operator theory and matrix analysis. In this paper we briefly survey some analytic and algebraic properties of these operations, and investigate their intimate connection to Thompson type isometries in different operator algebras.

How to cite

top

Gaál, Marcell. "The operation $ABA$ in operator algebras." Commentationes Mathematicae Universitatis Carolinae 61.4 (2020): 513-521. <http://eudml.org/doc/297262>.

@article{Gaál2020,
abstract = {The binary operation $aba$, called Jordan triple product, and its variants (such as e.g. the sequential product $\sqrt\{a\} b \sqrt\{a\}$ or the inverted Jordan triple product $a b^\{-1\} a$) appear in several branches of operator theory and matrix analysis. In this paper we briefly survey some analytic and algebraic properties of these operations, and investigate their intimate connection to Thompson type isometries in different operator algebras.},
author = {Gaál, Marcell},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {loop; gyrogroup; Jordan triple product; Thompson metric; JB-algebra},
language = {eng},
number = {4},
pages = {513-521},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The operation $ABA$ in operator algebras},
url = {http://eudml.org/doc/297262},
volume = {61},
year = {2020},
}

TY - JOUR
AU - Gaál, Marcell
TI - The operation $ABA$ in operator algebras
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2020
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 61
IS - 4
SP - 513
EP - 521
AB - The binary operation $aba$, called Jordan triple product, and its variants (such as e.g. the sequential product $\sqrt{a} b \sqrt{a}$ or the inverted Jordan triple product $a b^{-1} a$) appear in several branches of operator theory and matrix analysis. In this paper we briefly survey some analytic and algebraic properties of these operations, and investigate their intimate connection to Thompson type isometries in different operator algebras.
LA - eng
KW - loop; gyrogroup; Jordan triple product; Thompson metric; JB-algebra
UR - http://eudml.org/doc/297262
ER -

References

top
  1. Abe T., Akiyama S., Hatori O., Isometries of the special orthogonal group, Linear Algebra Appl. 439 (2013), no. 1, 174–188. MR3045229
  2. Beneduci R., Molnár L., 10.1016/j.jmaa.2014.05.009, J. Math. Anal. Appl. 420 (2014) no. 1, 551–562. MR3229839DOI10.1016/j.jmaa.2014.05.009
  3. Gaál M., 10.1007/s00013-017-1122-4, Arch. Math. (Basel) 110 (2018), no. 1, 61–70. MR3742293DOI10.1007/s00013-017-1122-4
  4. Hatori O., 10.1090/conm/645/12925, in Function Spaces in Analysis, Contemp. Math., 645, Amer. Math. Soc., Providence, 2015, pages 119–134. MR3382409DOI10.1090/conm/645/12925
  5. Hatori O., Molnár L., 10.1016/j.jmaa.2013.06.065, J. Math. Anal. Appl. 409 (2014), no. 1, 158–167. MR3095026DOI10.1016/j.jmaa.2013.06.065
  6. Hatori O., Molnár L., 10.1007/s00013-015-0856-0, Arch. Math. (Basel) 106 (2016), no. 2, 155–163. MR3453990DOI10.1007/s00013-015-0856-0
  7. Hatori O., Molnár L., 10.4064/sm8393-8-2016, Studia Math. 236 (2017), no. 2, 101–126. MR3610684DOI10.4064/sm8393-8-2016
  8. Isidro J. M., Rodríguez-Palacios Á., 10.1007/BF02567998, Manuscripta Math. 86 (1995), no. 3, 337–348. MR1323796DOI10.1007/BF02567998
  9. Lemmens B., Roelands M., Wortel M., 10.1007/s00209-018-2144-8, Math. Z. 292 (2019), no. 3–4, 1511–1547. MR3980302DOI10.1007/s00209-018-2144-8
  10. Molnár L., General Mazur–Ulam type theorems and some applications, Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics, Oper. Theory Adv. Appl., 250, Birkhäuser, 2015, pages 311–342. MR3468225
  11. Sabinin L. V., Sabinina L. L., Sbitneva L. V., 10.1007/s000100050039, Aequationes Math. 56 (1998), no. 1–2, 11–17. MR1628291DOI10.1007/s000100050039
  12. Ungar A. A., Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity, World Scientific Publishing, Hackensack, 2008. Zbl1147.83004MR2396580

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.