Boundary exact controllability for a porous elastic Timoshenko system
Manoel J. Santos; Carlos A. Raposo; Leonardo R. S. Rodrigues
Applications of Mathematics (2020)
- Volume: 65, Issue: 4, page 343-354
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topSantos, Manoel J., Raposo, Carlos A., and Rodrigues, Leonardo R. S.. "Boundary exact controllability for a porous elastic Timoshenko system." Applications of Mathematics 65.4 (2020): 343-354. <http://eudml.org/doc/297266>.
@article{Santos2020,
abstract = {In this paper, we consider a one-dimensional system governed by two partial differential equations. Such a system models phenomena in engineering, such as vibrations in beams or deformation of elastic bodies with porosity. By using the HUM method, we prove that the system is boundary exactly controllable in the usual energy space. We will also determine the minimum time allowed by the method for the controllability to occur.},
author = {Santos, Manoel J., Raposo, Carlos A., Rodrigues, Leonardo R. S.},
journal = {Applications of Mathematics},
keywords = {boundary exact controllability; Timoshenko beam; porous elasticity},
language = {eng},
number = {4},
pages = {343-354},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundary exact controllability for a porous elastic Timoshenko system},
url = {http://eudml.org/doc/297266},
volume = {65},
year = {2020},
}
TY - JOUR
AU - Santos, Manoel J.
AU - Raposo, Carlos A.
AU - Rodrigues, Leonardo R. S.
TI - Boundary exact controllability for a porous elastic Timoshenko system
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 4
SP - 343
EP - 354
AB - In this paper, we consider a one-dimensional system governed by two partial differential equations. Such a system models phenomena in engineering, such as vibrations in beams or deformation of elastic bodies with porosity. By using the HUM method, we prove that the system is boundary exactly controllable in the usual energy space. We will also determine the minimum time allowed by the method for the controllability to occur.
LA - eng
KW - boundary exact controllability; Timoshenko beam; porous elasticity
UR - http://eudml.org/doc/297266
ER -
References
top- Akil, M., Chitour, Y., Ghader, M., Wehbe, A., 10.3233/ASY-191574, (to appear) in Asymptotic Anal. DOI10.3233/ASY-191574
- Júnior, D. S. Almeida, Ramos, A. J. A., Santos, M. L., 10.1007/s10444-014-9351-6, Adv. Comput. Math. 41 (2015), 105-130. (2015) Zbl1314.65119MR3311475DOI10.1007/s10444-014-9351-6
- Júnior, D. S. Almeida, Santos, M. L., Rivera, J. E. Muñoz, 10.1002/mma.2741, Math. Methods Appl. Sci. 36 (2013), 1965-1976. (2013) Zbl1273.74072MR3091687DOI10.1002/mma.2741
- Aouadi, M., Campo, M., Copetti, M. I. M., Fernández, J. R., 10.1007/s00033-019-1161-8, Z. Angew. Math. Phys. 70 (2019), Article ID 117, 26 pages. (2019) Zbl1418.74018MR3982962DOI10.1007/s00033-019-1161-8
- Araruna, F. D., Zuazua, E., 10.1137/060659934, SIAM J. Control Optim. 47 (2008), 1909-1938. (2008) Zbl1170.74351MR2421335DOI10.1137/060659934
- Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Nascimento, F. A. Falcão, Lasiecka, I., Rodrigues, J. H., 10.1007/s00033-013-0380-7, Z. Angew. Math. Phys. 65 (2014), 1189-1206. (2014) Zbl1316.35034MR3279525DOI10.1007/s00033-013-0380-7
- Cowin, S. C., Nunziato, J. W., 10.1007/BF00041230, J. Elasticity 13 (1983), 125-147. (1983) Zbl0523.73008DOI10.1007/BF00041230
- Dell'Oro, F., Pata, V., 10.1016/j.jde.2014.04.009, J. Differ. Equations 257 (2014), 523-548. (2014) Zbl1288.35074MR3200380DOI10.1016/j.jde.2014.04.009
- Dridi, H., Djebabla, A., 10.1007/s11565-019-00333-2, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 66 (2020), 13-25. (2020) Zbl07194183MR4091442DOI10.1007/s11565-019-00333-2
- Infante, J. A., Zuazua, E., 10.1051/m2an:1999123, M2AN, Math. Model. Numer. Anal. 33 (1999), 407-438. (1999) Zbl0947.65101MR1700042DOI10.1051/m2an:1999123
- Lagnese, J. E., Leugering, G., Schmidt, E. J. P. G., 10.1137/0331035, SIAM J. Control Optim. 31 (1993), 780-811. (1993) Zbl0775.93107MR1214764DOI10.1137/0331035
- Lagnese, J. E., Lions, J.-L., Modelling Analysis and Control of Thin Plates, Recherches en Mathématiques Appliquées 6. Masson, Paris (1988). (1988) Zbl0662.73039MR0953313
- Lions, J.-L., Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 2. Perturbations, Recherches en Mathématiques Appliquées 9. Masson, Paris (1988), French. (1988) Zbl0653.93003MR0963060
- Lions, J.-L., 10.1137/1030001, SIAM Rev. 30 (1988), 1-68. (1988) Zbl0644.49028MR0931277DOI10.1137/1030001
- Lions, J.-L., Magenes, E., 10.1007/978-3-642-65393-3, Die Grundlehren der mathematischen Wissenschaften 183. Springer, Berlin (1973). (1973) Zbl0251.35001MR0350179DOI10.1007/978-3-642-65393-3
- Magaña, A., Quintanilla, R., 10.1016/j.ijsolstr.2005.06.077, Int. J. Solids Struct. 43 (2006), 3414-3427. (2006) Zbl1121.74361MR2221521DOI10.1016/j.ijsolstr.2005.06.077
- Medeiros, L. A., Exact controllability for a Timoshenko model of vibrations of beams, Adv. Math. Sci. Appl. 2 (1993), 47-61. (1993) Zbl0860.93014MR1239248
- Medeiros, L. A., Miranda, M. M., Lourêdo, A. T., Introduction Exact Control Theory: Method HUM, EDUEPB, Campina Grande (2013). (2013)
- Mercier, D., Régnier, V., 10.3934/eect.2019021, Evol. Equ. Control Theory 8 (2019), 423. (2019) Zbl1428.35578MR3959450DOI10.3934/eect.2019021
- Rivera, J. E. Muñoz, Quintanilla, R., 10.1016/j.jmaa.2007.06.005, J. Math. Anal. Appl. 338 (2008), 1296-1309. (2008) Zbl1131.74019MR2386497DOI10.1016/j.jmaa.2007.06.005
- Pazy, A., 10.1007/978-1-4612-5561-1, Applied Mathematical Sciences 44. Springer, New York (1983). (1983) Zbl0516.47023MR0710486DOI10.1007/978-1-4612-5561-1
- Ramos, A. J. A., Júnior, D. S. Almeida, Freitas, M. M., Santos, M. J. dos, Santos, A. R., 10.1007/s11565-019-00334-1, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 66 (2020), 113-134. (2020) Zbl07194190MR4091443DOI10.1007/s11565-019-00334-1
- Raposo, C. A., Apalara, T. A., Ribeiro, J. O., 10.1016/j.jmaa.2018.06.017, J. Math. Anal. Appl. 466 (2018), 819-834. (2018) Zbl1394.35265MR3818147DOI10.1016/j.jmaa.2018.06.017
- Raposo, C. A., Bastos, W. D., Santos, M. L., 10.1590/s0101-82052007000200003, Comput. Appl. Math. 26 (2007), 215-234. (2007) Zbl1182.35216MR2337709DOI10.1590/s0101-82052007000200003
- Said-Houari, B., Laskri, Y., 10.1016/j.amc.2010.08.021, Appl. Math. Comput. 217 (2010), 2857-2869. (2010) Zbl1342.74086MR2733729DOI10.1016/j.amc.2010.08.021
- Santos, M. L., Júnior, D. S. Almeida, 10.1007/s00033-016-0622-6, Z. Angew. Math. Phys. 67 (2016), Article ID 63, 18 pages. (2016) Zbl1351.35217MR3494484DOI10.1007/s00033-016-0622-6
- Shubov, M. A., 10.1093/imamci/17.4.375, IMA J. Math. Control Inf. 17 (2000), 375-395. (2000) Zbl0991.93016MR1797350DOI10.1093/imamci/17.4.375
- Soufyane, A., 10.1016/S0764-4442(99)80244-4, C. R. Acad. Sci., Paris, Sér. I, Math. 328 (1999), 731-734 French. (1999) Zbl0943.74042MR1680836DOI10.1016/S0764-4442(99)80244-4
- Timoshenko, S. P., 10.1080/14786442108636264, Lond. Edinb. Dubl. Phil. Mag., Ser. VI. 41 (1921), 744-746. (1921) DOI10.1080/14786442108636264
- Zhang, C., Hu, X., 10.1215/kjm/1250281029, J. Math. Kyoto Univ. 47 (2007), 643-655. (2007) Zbl1141.74036MR2402520DOI10.1215/kjm/1250281029
- Zuazua, E., Exact controllability for the semilinear wave equation, J. Math. Pures Appl., IX. Sér. 69 (1990), 1-31. (1990) MR1054122
- Zuazua, E., 10.1137/S0036144503432862, SIAM Rev. 47 (2005), 197-243. (2005) Zbl1077.65095MR2179896DOI10.1137/S0036144503432862
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.