Parametric control to quasi-linear systems based on dynamic compensator and multi-objective optimization

Da-Ke Gu; Da-Wei Zhang

Kybernetika (2020)

  • Volume: 56, Issue: 3, page 516-542
  • ISSN: 0023-5954

Abstract

top
This paper considers a parametric approach for quasi-linear systems by using dynamic compensator and multi-objective optimization. Based on the solutions of generalized Sylvester equations, we establish the more general parametric forms of dynamic compensator and the left and right closed-loop eigenvector matrices, and give two groups of arbitrary parameters. By using the parametric approach, the closed-loop system is converted into a linear constant one with a desired eigenstructure. Meanwhile, it also proposes a novel method to realize multi-objective design and optimization. Multiple performance objectives, containing overall eigenvalue sensitivity, H 2 norm, H norm and low compensation gain, are formulated by arbitrary parameters, then robustness and low compensation gain criteria are expressed by a comprehensive objective function which contains each performance index weighted. By utilizing degrees of freedom (DOFs) in arbitrary parameters, we can optimize the comprehensive objective function such that an optimized dynamic compensator is found to satisfy the robustness and low compensation gain criteria. Finally, an example of attitude control of combined spacecrafts is presented which proves the effectiveness and feasibility of the parametric approach.

How to cite

top

Gu, Da-Ke, and Zhang, Da-Wei. "Parametric control to quasi-linear systems based on dynamic compensator and multi-objective optimization." Kybernetika 56.3 (2020): 516-542. <http://eudml.org/doc/297286>.

@article{Gu2020,
abstract = {This paper considers a parametric approach for quasi-linear systems by using dynamic compensator and multi-objective optimization. Based on the solutions of generalized Sylvester equations, we establish the more general parametric forms of dynamic compensator and the left and right closed-loop eigenvector matrices, and give two groups of arbitrary parameters. By using the parametric approach, the closed-loop system is converted into a linear constant one with a desired eigenstructure. Meanwhile, it also proposes a novel method to realize multi-objective design and optimization. Multiple performance objectives, containing overall eigenvalue sensitivity, $H_2$ norm, $H_\infty $ norm and low compensation gain, are formulated by arbitrary parameters, then robustness and low compensation gain criteria are expressed by a comprehensive objective function which contains each performance index weighted. By utilizing degrees of freedom (DOFs) in arbitrary parameters, we can optimize the comprehensive objective function such that an optimized dynamic compensator is found to satisfy the robustness and low compensation gain criteria. Finally, an example of attitude control of combined spacecrafts is presented which proves the effectiveness and feasibility of the parametric approach.},
author = {Gu, Da-Ke, Zhang, Da-Wei},
journal = {Kybernetika},
keywords = {quasi-linear systems; parametric control; dynamic compensator; multi-objective design and optimization; utilize DOFs in parameter matrices},
language = {eng},
number = {3},
pages = {516-542},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Parametric control to quasi-linear systems based on dynamic compensator and multi-objective optimization},
url = {http://eudml.org/doc/297286},
volume = {56},
year = {2020},
}

TY - JOUR
AU - Gu, Da-Ke
AU - Zhang, Da-Wei
TI - Parametric control to quasi-linear systems based on dynamic compensator and multi-objective optimization
JO - Kybernetika
PY - 2020
PB - Institute of Information Theory and Automation AS CR
VL - 56
IS - 3
SP - 516
EP - 542
AB - This paper considers a parametric approach for quasi-linear systems by using dynamic compensator and multi-objective optimization. Based on the solutions of generalized Sylvester equations, we establish the more general parametric forms of dynamic compensator and the left and right closed-loop eigenvector matrices, and give two groups of arbitrary parameters. By using the parametric approach, the closed-loop system is converted into a linear constant one with a desired eigenstructure. Meanwhile, it also proposes a novel method to realize multi-objective design and optimization. Multiple performance objectives, containing overall eigenvalue sensitivity, $H_2$ norm, $H_\infty $ norm and low compensation gain, are formulated by arbitrary parameters, then robustness and low compensation gain criteria are expressed by a comprehensive objective function which contains each performance index weighted. By utilizing degrees of freedom (DOFs) in arbitrary parameters, we can optimize the comprehensive objective function such that an optimized dynamic compensator is found to satisfy the robustness and low compensation gain criteria. Finally, an example of attitude control of combined spacecrafts is presented which proves the effectiveness and feasibility of the parametric approach.
LA - eng
KW - quasi-linear systems; parametric control; dynamic compensator; multi-objective design and optimization; utilize DOFs in parameter matrices
UR - http://eudml.org/doc/297286
ER -

References

top
  1. Chang, J., 10.1049/iet-cta.2012.1027, IET Control Theory A 7 (2013), 13, 1675-1682. MR3115112DOI10.1049/iet-cta.2012.1027
  2. Chen, C. K., Lai, T. W., Yan, J. J., Liao, T. L., 10.1016/j.chaos.2007.04.004, Chaos Soliton. Fract. 39 (2009), 15, 1055-1063. MR2512914DOI10.1016/j.chaos.2007.04.004
  3. Santos, J. F. S. Dos, Pellanda, P. C., Simões, A. M., 10.1016/j.sysconle.2018.03.008, Syst. Control Lett. 116 (2018), 8-14. MR3804535DOI10.1016/j.sysconle.2018.03.008
  4. G.-R, Duan, Generalized Sylvester Equations - Unified Parametric Solutions., CRC Press Taylor and Francis Group, Boca Raton 2014. MR3380768
  5. Duan, G.-R., 10.1109/iccas.2014.6987917, In: Proc. 14th International Conference on Control, Automation and Systems, IEEE Press, Gyeonggi-do 2014, pp. 928-934. DOI10.1109/iccas.2014.6987917
  6. Duan, G.-R., Yu, H.-H., 10.1201/b15060, CRC Press Taylor and Francis Group, Boca Raton 2013. MR3328859DOI10.1201/b15060
  7. Gu, D.-K., Liu, G.-P., Duan, G.-R., 10.1080/00207179.2017.1350885, Int. J. Control 92 (2019), 2, 291-302. MR3938071DOI10.1080/00207179.2017.1350885
  8. Gu, D.-K., Zhang, D.-W., Duan, G.-R., 10.1016/j.ejcon.2018.09.008, Eur. J. Control. 47 (2019), 44-52. MR3948880DOI10.1016/j.ejcon.2018.09.008
  9. Gu, D.-K., Zhang, D.-W., Duan, G.-R., 10.1002/asjc.2112, Asian J. Control (2019). MR4001112DOI10.1002/asjc.2112
  10. Gu, D.-K., Zhang, D.-W., 10.1016/j.amc.2019.124681, App. Math. Comput. 365 (2020), 124681. MR4001112DOI10.1016/j.amc.2019.124681
  11. Hashem, I., Telen, D., Nimmegeers, P., Logist, F., Impe, J. V., 10.1016/j.ifacol.2017.08.1712, IFAC-PapersOnLine 50 (2017), 1, 8722-8727. DOI10.1016/j.ifacol.2017.08.1712
  12. Jadachowski, L., Meurer, T., Kugi, A., 10.3182/20140824-6-za-1003.01246, IFAC Proc. Vol. 47 (2014), 3, 7761-7766. DOI10.3182/20140824-6-za-1003.01246
  13. Klug, M., Castelan, E. B., Leite, V. J S., 10.3182/20110828-6-it-1002.02175, IFAC Proc. Vol. 44 (2011), 1, 14495-145000. DOI10.3182/20110828-6-it-1002.02175
  14. Knüppel, T., Woittennek, F., 10.1109/tac.2014.2336451, IEEE T. Automat. Control 60 (2015), 1, 5-18. MR3299410DOI10.1109/tac.2014.2336451
  15. Konigorski, U., 10.1016/j.sysconle.2011.11.015, Syst. Control Lett. 61 (2012), 2, 292-297. MR2878717DOI10.1016/j.sysconle.2011.11.015
  16. Li, K., Nagasio, T., Kida, T., 10.1299/kikaic.70.1401, Trans. Japan Soc. Mechani. Engineers Series C 70 (2004), 702, 1401-1408. DOI10.1299/kikaic.70.1401
  17. Lim, D., Yi, K., Jung, S., Jung, H., Ro, J., 10.1109/tmag.2015.2449872, IEEE T. Magn. 51 (2015), 11, 1-4. DOI10.1109/tmag.2015.2449872
  18. Liu, G.-P., Patton, R. J., Eigenstructure Assignment for Control System Design., John Wiley and Sons, Hoboken 1998. 
  19. Manuel, P., Gonzalo, R., Victor, T., 10.1080/10236190903260820, J. Differ. Equ. Appl. 17 (2011), 5, 765-778. MR2795524DOI10.1080/10236190903260820
  20. Mehrotra, K., Mahapatra, P., 10.1109/7.624345, IEEE T. Aero. Elec. Sys. 33 (1997), 4, 1094-1105. DOI10.1109/7.624345
  21. Mihai, M., 10.1002/pamm.200700782, Proc. Appl. Math. Mech. 7 (2007), 4130033-4130034. DOI10.1002/pamm.200700782
  22. Patton, R. J., Liu, G.-P., Patel, Y., 10.1109/9.341806, IEEE Trans. Automat. Control 40 (1995), 2, 337-342. MR1312908DOI10.1109/9.341806
  23. Rotondo, D., Nejjari, F., Puig, V., 10.3182/20140824-6-za-1003.00054, IFAC Proc. Vol. 47 (2014), 3, 4062-4067. DOI10.3182/20140824-6-za-1003.00054
  24. Seo, J. H., Shim, H., Back, J., 10.1016/j.automatica.2009.07.022, Automatica 45 (2009), 11, 2659-2664. MR2889327DOI10.1016/j.automatica.2009.07.022
  25. She, S. X., Dong, S. J., Varying accelerated motion and comfort., Phys. Engrg. 16 (2006), 35-37. (In Chinese) 
  26. Slotine, J.-J. E., Li, W.-P., Applied Nonlinear Control., Pearson Education Company, Upper Saddle River 1991. Zbl0753.93036
  27. Tang, Y. R., Xiao, X., Li, Y. M., 10.1016/j.measurement.2017.05.036, Measurement 109 (2017), 51-64. DOI10.1016/j.measurement.2017.05.036
  28. Tsuzuki, T., Yamashita, Y., 10.3182/20080706-5-kr-1001.01043, IFAC Proc. Vol. 41 (2008), 2, 6178-6183. DOI10.3182/20080706-5-kr-1001.01043
  29. Yi, T., Huang, D., Fu, F., He, H., Li, T., 10.1109/tie.2015.2510977, IEEE Trans. Ind. Electron. 63 (2016), 4, 2488-2500. DOI10.1109/tie.2015.2510977
  30. Yuno, T., Ohtsuka, Y., 10.1016/j.ifacol.2016.10.305, IFAC-PapersOnLine 49 (2016), 18, 1042-1047. DOI10.1016/j.ifacol.2016.10.305
  31. Zhou, B., Duan, G.-R., 10.1016/j.sysconle.2005.07.002, Syst. Control Lett. 55 (2009), 3, 193-198. MR2188507DOI10.1016/j.sysconle.2005.07.002
  32. Zhou, D., Wang, J., Jiang, B., Guo, H., Ji, Y., 10.1109/access.2017.2777888, IEEE Access 6 (2018), 19465-19477. DOI10.1109/access.2017.2777888
  33. Zola, E., Barcelo-Arroyo, F., Kassler, A., 10.1109/lcomm.2014.2359456, IEEE Commun. Lett. 18 (2014), 11, 2007-2010. DOI10.1109/lcomm.2014.2359456

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.