Carleson measures and Toeplitz operators on small Bergman spaces on the ball

Van An Le

Czechoslovak Mathematical Journal (2021)

  • Issue: 1, page 211-229
  • ISSN: 0011-4642

Abstract

top
We study Carleson measures and Toeplitz operators on the class of so-called small weighted Bergman spaces, introduced recently by Seip. A characterization of Carleson measures is obtained which extends Seip’s results from the unit disk of to the unit ball of n . We use this characterization to give necessary and sufficient conditions for the boundedness and compactness of Toeplitz operators. Finally, we study the Schatten p classes membership of Toeplitz operators for 1 < p < .

How to cite

top

Le, Van An. "Carleson measures and Toeplitz operators on small Bergman spaces on the ball." Czechoslovak Mathematical Journal (2021): 211-229. <http://eudml.org/doc/297295>.

@article{Le2021,
abstract = {We study Carleson measures and Toeplitz operators on the class of so-called small weighted Bergman spaces, introduced recently by Seip. A characterization of Carleson measures is obtained which extends Seip’s results from the unit disk of $\mathbb \{C\}$ to the unit ball of $\mathbb \{C\}^n$. We use this characterization to give necessary and sufficient conditions for the boundedness and compactness of Toeplitz operators. Finally, we study the Schatten $p$ classes membership of Toeplitz operators for $1<p<\infty $.},
author = {Le, Van An},
journal = {Czechoslovak Mathematical Journal},
keywords = {Bergman space; Carleson measure; Toeplitz operator; Schatten classes},
language = {eng},
number = {1},
pages = {211-229},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Carleson measures and Toeplitz operators on small Bergman spaces on the ball},
url = {http://eudml.org/doc/297295},
year = {2021},
}

TY - JOUR
AU - Le, Van An
TI - Carleson measures and Toeplitz operators on small Bergman spaces on the ball
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 211
EP - 229
AB - We study Carleson measures and Toeplitz operators on the class of so-called small weighted Bergman spaces, introduced recently by Seip. A characterization of Carleson measures is obtained which extends Seip’s results from the unit disk of $\mathbb {C}$ to the unit ball of $\mathbb {C}^n$. We use this characterization to give necessary and sufficient conditions for the boundedness and compactness of Toeplitz operators. Finally, we study the Schatten $p$ classes membership of Toeplitz operators for $1<p<\infty $.
LA - eng
KW - Bergman space; Carleson measure; Toeplitz operator; Schatten classes
UR - http://eudml.org/doc/297295
ER -

References

top
  1. Arroussi, H., Park, I., Pau, J., 10.4064/sm8345-12-2015, Stud. Math. 229 (2015), 203-221. (2015) Zbl1344.30050MR3454300DOI10.4064/sm8345-12-2015
  2. Carleson, L., 10.2307/2372840, Am. J. Math. 80 (1958), 921-930. (1958) Zbl0085.06504MR117349DOI10.2307/2372840
  3. Carleson, L., 10.2307/1970375, Ann. Math. 76 (1962), 547-559. (1962) Zbl0112.29702MR0141789DOI10.2307/1970375
  4. Hastings, W. W., 10.1090/S0002-9939-1975-0374886-9, Proc. Am. Math. Soc. 52 (1975), 237-241. (1975) Zbl0296.31009MR0374886DOI10.1090/S0002-9939-1975-0374886-9
  5. Lin, P., Rochberg, R., 10.2140/pjm.1996.173.127, Pac. J. Math. 173 (1996), 127-146. (1996) Zbl0853.47015MR1387794DOI10.2140/pjm.1996.173.127
  6. Luecking, D., 10.1090/S0002-9939-1983-0687635-6, Proc. Am. Math. Soc. 87 (1983), 656-660. (1983) Zbl0521.32005MR0687635DOI10.1090/S0002-9939-1983-0687635-6
  7. Luecking, D., 10.1016/0022-1236(87)90072-3, J. Func. Anal. 73 (1987), 345-368. (1987) Zbl0618.47018MR0899655DOI10.1016/0022-1236(87)90072-3
  8. Pau, J., Zhao, R., 10.1307/mmj/1447878031, Mich. Math. J. 64 (2015), 759-796. (2015) Zbl1333.32007MR3426615DOI10.1307/mmj/1447878031
  9. Peláez, J. Á., Rättyä, J., 10.1090/memo/1066, Mem. Am. Math. Soc. 227 (2014), 124 pages. (2014) Zbl1308.30001MR3155774DOI10.1090/memo/1066
  10. Peláez, J. Á., Rättyä, J., 10.1007/s00208-014-1108-5, Math. Ann. 362 (2015), 205-239. (2015) Zbl1333.46032MR3343875DOI10.1007/s00208-014-1108-5
  11. Peláez, J. Á., Rättyä, J., 10.1016/j.aim.2016.02.017, Adv. Math. 293 (2016), 606-643. (2016) Zbl1359.47025MR3474330DOI10.1016/j.aim.2016.02.017
  12. Peláez, J. Á., Rättyä, J., Sierra, K., 10.1007/s12220-017-9837-9, J. Geom. Anal. 28 (2018), 656-687. (2018) Zbl06859122MR3745876DOI10.1007/s12220-017-9837-9
  13. Seip, K., 10.1007/s13348-011-0054-8, Collect. Math. 64 (2013), 61-72. (2013) Zbl1266.30020MR3016633DOI10.1007/s13348-011-0054-8
  14. Zhu, K., 10.1007/0-387-27539-8, Graduate Texts in Mathematics 226, Springer, New York (2005). (2005) Zbl1067.32005MR2115155DOI10.1007/0-387-27539-8
  15. Zhu, K., 10.1090/surv/138, Mathematical Surveys and Monographs 138, American Mathematical Society, Providence (2007). (2007) Zbl1123.47001MR2311536DOI10.1090/surv/138

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.