The module of vector-valued modular forms is Cohen-Macaulay
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 4, page 1211-1218
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGottesman, Richard. "The module of vector-valued modular forms is Cohen-Macaulay." Czechoslovak Mathematical Journal 70.4 (2020): 1211-1218. <http://eudml.org/doc/297297>.
@article{Gottesman2020,
abstract = {Let $H$ denote a finite index subgroup of the modular group $\Gamma $ and let $\rho $ denote a finite-dimensional complex representation of $H.$ Let $M(\rho )$ denote the collection of holomorphic vector-valued modular forms for $\rho $ and let $M(H)$ denote the collection of modular forms on $H$. Then $M(\rho )$ is a $\mathbb \{Z\}$-graded $M(H)$-module. It has been proven that $M(\rho )$ may not be projective as a $M(H)$-module. We prove that $M(\rho )$ is Cohen-Macaulay as a $M(H)$-module. We also explain how to apply this result to prove that if $M(H)$ is a polynomial ring, then $M(\rho )$ is a free $M(H)$-module of rank $\dim \rho .$},
author = {Gottesman, Richard},
journal = {Czechoslovak Mathematical Journal},
keywords = {vector-valued modular form; Cohen-Macaulay module},
language = {eng},
number = {4},
pages = {1211-1218},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The module of vector-valued modular forms is Cohen-Macaulay},
url = {http://eudml.org/doc/297297},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Gottesman, Richard
TI - The module of vector-valued modular forms is Cohen-Macaulay
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 4
SP - 1211
EP - 1218
AB - Let $H$ denote a finite index subgroup of the modular group $\Gamma $ and let $\rho $ denote a finite-dimensional complex representation of $H.$ Let $M(\rho )$ denote the collection of holomorphic vector-valued modular forms for $\rho $ and let $M(H)$ denote the collection of modular forms on $H$. Then $M(\rho )$ is a $\mathbb {Z}$-graded $M(H)$-module. It has been proven that $M(\rho )$ may not be projective as a $M(H)$-module. We prove that $M(\rho )$ is Cohen-Macaulay as a $M(H)$-module. We also explain how to apply this result to prove that if $M(H)$ is a polynomial ring, then $M(\rho )$ is a free $M(H)$-module of rank $\dim \rho .$
LA - eng
KW - vector-valued modular form; Cohen-Macaulay module
UR - http://eudml.org/doc/297297
ER -
References
top- Bannai, E., Koike, M., Munemasa, A., Sekiguchi, J., 10.2969/aspm/03210245, Groups and Combinatorics - In Memory of Michio Suzuki Advanced Studies in Pure Mathematics 32. Mathematical Society Japan, Tokyo (2001), 245-254. (2001) Zbl1029.11012MR1893493DOI10.2969/aspm/03210245
- Benson, D. J., 10.1017/CBO9780511565809, London Mathematical Society Lecture Note Series 190. Cambridge University Press, Cambridge (1993). (1993) Zbl0864.13001MR1249931DOI10.1017/CBO9780511565809
- Candelori, L., Franc, C., 10.1142/S179304211750004X, Int. J. Number Theory 13 (2017), 39-63. (2017) Zbl1419.11076MR3573412DOI10.1142/S179304211750004X
- Candelori, L., Franc, C., 10.18576/amis/130321, Commun. Number Theory Phys. 13 (2019), 487-528. (2019) Zbl07124990MR4013728DOI10.18576/amis/130321
- Franc, C., Mason, G., 10.4153/CMB-2014-007-3, Can. Math. Bull. 57 (2014), 485-494. (2014) Zbl1302.11027MR3239110DOI10.4153/CMB-2014-007-3
- Franc, C., Mason, G., 10.1007/s11139-014-9644-x, Ramanujan J. 41 (2016), 233-267. (2016) Zbl1418.11064MR3574630DOI10.1007/s11139-014-9644-x
- Gannon, T., 10.1007/978-3-662-43831-2_9, Conformal Field Theory, Automorphic Forms and Related Topics Contributions in Mathematical and Computational Sciences 8. Springer, Berlin (2014), 247-286. (2014) Zbl1377.11055MR3559207DOI10.1007/978-3-662-43831-2_9
- Gottesman, R., 10.1142/S1793042120500141, Int. J. Number Theory 16 (2020), 241-289. (2020) Zbl07182420MR4077422DOI10.1142/S1793042120500141
- Marks, C., 10.4310/CNTP.2015.v9.n2.a5, Commun. Number Theory Phys. 9 (2015), 387-411. (2015) Zbl1381.11038MR3361298DOI10.4310/CNTP.2015.v9.n2.a5
- Marks, C., Mason, G., 10.1112/jlms/jdq020, J. Lond. Math. Soc., II. Ser. 82 (2010), 32-48. (2010) Zbl1221.11134MR2669639DOI10.1112/jlms/jdq020
- Mason, G., 10.1090/S0002-9939-2011-11098-0, Proc. Am. Math. Soc. 140 (2012), 1921-1930. (2012) Zbl1276.11064MR2888179DOI10.1090/S0002-9939-2011-11098-0
- Selberg, A., On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math. 8 American Mathematical Society, Providence (1965), 1-15. (1965) Zbl0142.33903MR0182610
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.