Solutions of the Diophantine Equation from Recurrence Sequences
Communications in Mathematics (2020)
- Volume: 28, Issue: 1, page 55-66
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topHashim, Hayder R.. "Solutions of the Diophantine Equation $7X^2+Y^7=Z^2$ from Recurrence Sequences." Communications in Mathematics 28.1 (2020): 55-66. <http://eudml.org/doc/297308>.
@article{Hashim2020,
abstract = {Consider the system $x^2-ay^2=b$, $P(x,y)= z^2$, where $P$ is a given integer polynomial. Historically, the integer solutions of such systems have been investigated by many authors using the congruence arguments and the quadratic reciprocity. In this paper, we use Kedlaya’s procedure and the techniques of using congruence arguments with the quadratic reciprocity to investigate the solutions of the Diophantine equation $7X^2+Y^7=Z^2$ if $(X,Y)=(L_n,F_n)$ (or $(X,Y)=(F_n,L_n)$) where $\lbrace F_n\rbrace $ and $\lbrace L_n\rbrace $ represent the sequences of Fibonacci numbers and Lucas numbers respectively.},
author = {Hashim, Hayder R.},
journal = {Communications in Mathematics},
keywords = {Lucas sequences; Diophantine equations; Pell equations},
language = {eng},
number = {1},
pages = {55-66},
publisher = {University of Ostrava},
title = {Solutions of the Diophantine Equation $7X^2+Y^7=Z^2$ from Recurrence Sequences},
url = {http://eudml.org/doc/297308},
volume = {28},
year = {2020},
}
TY - JOUR
AU - Hashim, Hayder R.
TI - Solutions of the Diophantine Equation $7X^2+Y^7=Z^2$ from Recurrence Sequences
JO - Communications in Mathematics
PY - 2020
PB - University of Ostrava
VL - 28
IS - 1
SP - 55
EP - 66
AB - Consider the system $x^2-ay^2=b$, $P(x,y)= z^2$, where $P$ is a given integer polynomial. Historically, the integer solutions of such systems have been investigated by many authors using the congruence arguments and the quadratic reciprocity. In this paper, we use Kedlaya’s procedure and the techniques of using congruence arguments with the quadratic reciprocity to investigate the solutions of the Diophantine equation $7X^2+Y^7=Z^2$ if $(X,Y)=(L_n,F_n)$ (or $(X,Y)=(F_n,L_n)$) where $\lbrace F_n\rbrace $ and $\lbrace L_n\rbrace $ represent the sequences of Fibonacci numbers and Lucas numbers respectively.
LA - eng
KW - Lucas sequences; Diophantine equations; Pell equations
UR - http://eudml.org/doc/297308
ER -
References
top- Muriefah, F.S. Abu, Rashed, A. Al, The simultaneous Diophantine equations and , Arabian Journal for Science and Engineering, 31, 2, 2006, 207-211, (2006) MR2284646
- Baker, A., 10.1112/S0025579300002588, Mathematika, 15, 2, 1968, 204-216, London Mathematical Society, (1968) MR0258756DOI10.1112/S0025579300002588
- Baker, A., Davenport, H., The equations and , Quart. J. Math. Oxford, 20, 1969, 129-137, (1969) MR0248079
- Brown, E., Sets in which is always a square, Mathematics of Computation, 45, 172, 1985, 613--620, (1985) MR0804949
- Cohn, J.H.E., Lucas and Fibonacci numbers and some Diophantine equations, Glasgow Mathematical Journal, 7, 1, 1965, 24-28, Cambridge University Press, (1965) MR0177944
- Copley, G.N., 10.2307/2309637, The American Mathematical Monthly, 66, 4, 1959, 288-290, JSTOR, (1959) MR0103168DOI10.2307/2309637
- Darmon, H., Granville, A., On the equations and , Bulletin of the London Mathematical Society, 27, 6, 1995, 513-543, Wiley Online Library, (1995) MR1348707
- Grinstead, C.M., 10.1090/S0025-5718-1978-0491480-0, Mathematics of Computation, 32, 143, 1978, 936-940, (1978) MR0491480DOI10.1090/S0025-5718-1978-0491480-0
- Kedlaya, K., 10.1090/S0025-5718-98-00918-1, Mathematics of Computation, 67, 222, 1998, 833-842, (1998) MR1443123DOI10.1090/S0025-5718-98-00918-1
- Mohanty, S.P., Ramasamy, A.M.S., The simultaneous diophantine equations and , Journal of Number Theory, 18, 3, 1984, 356-359, Elsevier, (1984) MR0746870
- Mordell, L.J., Diophantine equations, Pure and Applied Mathematics, 30, 1969, Academic Press, (1969) MR0249355
- Peker, B., Cenberci, S., 10.12988/imf.2017.7651, International Mathematical Forum, 12, 15, 2017, 715-720, (2017) DOI10.12988/imf.2017.7651
- Siegel, C.L., Über einige Anwendungen diophantischer Approximationen, On Some Applications of Diophantine Approximations. Publications of the Scuola Normale Superiore, vol. 2, 2014, 81-138, Edizioni della Normale, Pisa, (2014) MR3330350
- Szalay, L., On the resolution of simultaneous Pell equations, Annales Mathematicae et Informaticae, 34, 2007, 77-87, (2007) MR2385427
- Thue, A., Über Ann{ä}herungswerte algebraischer Zahlen, Journal für die Reine und Angewandte Mathematik, 135, 1909, 284-305, (1909) MR1580770
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.