Kinetic BGK model for a crowd: Crowd characterized by a state of equilibrium
Abdelghani El Mousaoui; Pierre Argoul; Mohammed El Rhabi; Abdelilah Hakim
Applications of Mathematics (2021)
- Volume: 66, Issue: 1, page 145-176
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topEl Mousaoui, Abdelghani, et al. "Kinetic BGK model for a crowd: Crowd characterized by a state of equilibrium." Applications of Mathematics 66.1 (2021): 145-176. <http://eudml.org/doc/297315>.
@article{ElMousaoui2021,
abstract = {This article focuses on dynamic description of the collective pedestrian motion based on the kinetic model of Bhatnagar-Gross-Krook. The proposed mathematical model is based on a tendency of pedestrians to reach a state of equilibrium within a certain time of relaxation. An approximation of the Maxwellian function representing this equilibrium state is determined. A result of the existence and uniqueness of the discrete velocity model is demonstrated. Thus, the convergence of the solution to that of the continuous BGK equation is proven. Numerical simulations are presented to validate the proposed mathematical model.},
author = {El Mousaoui, Abdelghani, Argoul, Pierre, El Rhabi, Mohammed, Hakim, Abdelilah},
journal = {Applications of Mathematics},
keywords = {discrete kinetic theory; crowd dynamics; BGK model; semi-Lagrangian schemes},
language = {eng},
number = {1},
pages = {145-176},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Kinetic BGK model for a crowd: Crowd characterized by a state of equilibrium},
url = {http://eudml.org/doc/297315},
volume = {66},
year = {2021},
}
TY - JOUR
AU - El Mousaoui, Abdelghani
AU - Argoul, Pierre
AU - El Rhabi, Mohammed
AU - Hakim, Abdelilah
TI - Kinetic BGK model for a crowd: Crowd characterized by a state of equilibrium
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 145
EP - 176
AB - This article focuses on dynamic description of the collective pedestrian motion based on the kinetic model of Bhatnagar-Gross-Krook. The proposed mathematical model is based on a tendency of pedestrians to reach a state of equilibrium within a certain time of relaxation. An approximation of the Maxwellian function representing this equilibrium state is determined. A result of the existence and uniqueness of the discrete velocity model is demonstrated. Thus, the convergence of the solution to that of the continuous BGK equation is proven. Numerical simulations are presented to validate the proposed mathematical model.
LA - eng
KW - discrete kinetic theory; crowd dynamics; BGK model; semi-Lagrangian schemes
UR - http://eudml.org/doc/297315
ER -
References
top- Agnelli, J. P., Colasuonno, F., Knopoff, D., 10.1142/S0218202515500049, Math. Models Methods Appl. Sci. 25 (2015), 109-129. (2015) Zbl1309.35176MR3277286DOI10.1142/S0218202515500049
- Bellomo, N., 10.1007/978-0-8176-4600-4, Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (2008). (2008) Zbl1140.91007MR2359781DOI10.1007/978-0-8176-4600-4
- Bellomo, N., Bellouquid, A., 10.3934/nhm.2011.6.383, Netw. Heterog. Media 6 (2011), 383-399. (2011) Zbl1260.90052MR2826751DOI10.3934/nhm.2011.6.383
- Bellomo, N., Gibelli, L., 10.1142/S0218202515400138, Math. Models Methods Appl. Sci. 25 (2015), 2417-2437. (2015) Zbl1325.91042MR3397538DOI10.1142/S0218202515400138
- Bellomo, N., Gibelli, L., 10.1016/j.compfluid.2016.04.022, Comput. Fluids 141 (2016), 13-21. (2016) Zbl1390.65030MR3569212DOI10.1016/j.compfluid.2016.04.022
- Bouchut, F., 10.1142/9789814354165_0006, Advances in Kinetic Theory and Computing Series on Advances in Mathematics for Applied Sciences 22. World Scientific, Singapore (1994), 171-190. (1994) Zbl0863.76068MR1323183DOI10.1142/9789814354165_0006
- Bouchut, F., James, F., 10.1080/03605309908821498, Commun. Partial Differ. Equations 24 (1999), 2173-2189. (1999) Zbl0937.35098MR1720754DOI10.1080/03605309908821498
- Buet, C., 10.1080/00411459608204829, Transp. Theory Stat. Phys. 25 (1996), 33-60. (1996) Zbl0857.76079MR1380030DOI10.1080/00411459608204829
- Burini, D., Gibelli, L., Outada, N., 10.1007/978-3-319-49996-3_6, Modeling and Simulation in Science, Engineering and Technology. Active Particles. Vol. 1 Birkhäuser, Cham (2017), 229-258. (2017) Zbl1368.00045MR3644592DOI10.1007/978-3-319-49996-3_6
- Colombo, R. M., Rosini, M. D., 10.1016/j.nonrwa.2008.08.002, Nonlinear Anal., Real World Appl. 10 (2009), 2716-2728. (2009) Zbl1169.35360MR2523235DOI10.1016/j.nonrwa.2008.08.002
- Cristiani, E., Piccoli, B., Tosin, A., 10.1007/978-3-319-06620-2, MS&A. Modeling, Simulation and Applications 12. Springer, Cham (2014). (2014) Zbl1314.00081MR3308728DOI10.1007/978-3-319-06620-2
- Dimarco, G., Loubere, R., 10.1016/j.jcp.2012.10.058, J. Comput. Phys. 255 (2013), 680-698. (2013) Zbl1349.76674MR3109810DOI10.1016/j.jcp.2012.10.058
- Dimarco, G., Motsch, S., 10.1142/S0218202516500330, Math. Models Methods Appl. Sci. 26 (2016), 1385-1410. (2016) Zbl1341.35170MR3494681DOI10.1142/S0218202516500330
- Dunford, N., Schwartz, J. T., Linear Operators. Part I: General Theory, Wiley Classics Library. John Wiley & Sons, New York (1988). (1988) Zbl0635.47001MR1009162
- El-Amrani, M., Seaïd, M., 10.1002/num.20288, Numer. Methods Partial Differ. Equations 24 (2008), 776-798. (2008) Zbl1143.65075MR2402574DOI10.1002/num.20288
- Elmoussaoui, A., Argoul, P., Rhabi, M. El, Hakim, A., 10.1016/j.camwa.2017.10.023, Comput. Math. Appl. 75 (2018), 1159-1180. (2018) Zbl1409.82013MR3766510DOI10.1016/j.camwa.2017.10.023
- Golse, F., Lions, P.-L., Perthame, B., Sentis, R., 10.1016/0022-1236(88)90051-1, J. Funct. Anal. 76 (1988), 110-125. (1988) Zbl0652.47031MR0923047DOI10.1016/0022-1236(88)90051-1
- Helbing, D., 10.1002/bs.3830360405, Behavioral Science 36 (1991), 298-310. (1991) DOI10.1002/bs.3830360405
- Helbing, D., A fluid-dynamic model for the movement of pedestrians, Complex Syst. 6 (1992), 391-415. (1992) Zbl0776.92016MR1211939
- Helbing, D., Molnár, P., 10.1103/PhysRevE.51.4282, Phys. Rev. E 51 (1995), Article ID 4282. (1995) DOI10.1103/PhysRevE.51.4282
- Helbing, D., Molnár, P., Self-organization phenomena in pedestrian crowds, Self-Organization of Complex Structures: From Individual to Collective Dynamics Gordon and Breach, Reading (1997), 569-577 F. Schweitzer. (1997) Zbl0926.91068MR1487930
- Henderson, L. F., 10.1038/229381a0, Nature 229 (1971), 381-383. (1971) DOI10.1038/229381a0
- Henderson, L. F., 10.1016/0041-1647(74)90027-6, Transp. Research 8 (1974), 509-515. (1974) DOI10.1016/0041-1647(74)90027-6
- Henderson, L. F., Lyons, D. J., 10.1038/240353a0, Nature 240 (1972), 353-355. (1972) DOI10.1038/240353a0
- Hoogendoorn, S., Bovy, P. H., 10.3141/1710-04, Transp. Research Record 1710 (2000), 28-36. (2000) DOI10.3141/1710-04
- Issautier, D., 10.1137/S0036142994266856, SIAM J. Numer. Anal. 33 (1996), 2099-2119. (1996) Zbl0861.65128MR1427455DOI10.1137/S0036142994266856
- Lentine, M., Grétarsson, J. T., Fedkiw, R., 10.1016/j.jcp.2010.12.036, J. Comput. Phys. 230 (2011), 2857-2879. (2011) Zbl1316.76076MR2774321DOI10.1016/j.jcp.2010.12.036
- Mieussens, L., 10.1006/jcph.2000.6548, J. Comput. Phys. 162 (2000), 429-466. (2000) Zbl0984.76070MR1774264DOI10.1006/jcph.2000.6548
- Mieussens, L., 10.1016/S0898-1221(01)85008-2, Comput. Math. Appl. 41 (2001), 83-96. (2001) Zbl0980.82027MR1808507DOI10.1016/S0898-1221(01)85008-2
- Mischler, S., 10.1007/s002050050060, Arch. Ration. Mech. Anal. 140 (1997), 53-77. (1997) Zbl0898.76089MR1482928DOI10.1007/s002050050060
- Nishinari, K., Kirchner, A., Namazi, A., Schadschneider, A., Extended floor field CA model for evacuation dynamics, IEICE Trans. Inf. Syst. E87-D (2004), 726-732. (2004)
- Panferov, V. A., Heintz, A. G., 10.1002/mma.303, Math. Methods Appl. Sci. 25 (2002), 571-593. (2002) Zbl0997.82036MR1895119DOI10.1002/mma.303
- Perthame, B., 10.1016/0022-0396(89)90173-3, J. Differ. Equations 82 (1989), 191-205. (1989) Zbl0694.35134MR1023307DOI10.1016/0022-0396(89)90173-3
- Perthame, B., Pulvirenti, M., 10.1007/BF00383223, Arch. Ration. Mech. Anal. 125 (1993), 289-295. (1993) Zbl0786.76072MR1245074DOI10.1007/BF00383223
- Reynolds, C. W., Steering behaviors for autonomous characters, Proceedings of Game Developers Conference San Francisco, Miller Freeman Game Group (1999), 763-782. (1999)
- Ringeisen, E., Contributions a l'étude Mathématique des Equations Cinétiques: Thèse de Doctorat en Mathématique, Université Paris-Saclay, Paris (1991), French. (1991)
- Rogier, F., Schneider, J., 10.1080/00411459408203868, Transp. Theory Stat. Phys. 23 (1994), 313-338. (1994) Zbl0811.76050MR1257657DOI10.1080/00411459408203868
- Still, G. K., 10.1201/b17097, CRC Press, Boca Raton (2014). (2014) DOI10.1201/b17097
- Stracquadanio, G., High Order Semi-Lagrangian Methods for BGK-Type Models in the Kinetic Theory of Rarefied Gases: PhD Thesis, Università degli Studi di Parma, Dipartimento di Matematica e Informatica, Parma (2015). (2015)
- Yang, J. Y., Huang, J. C., 10.1006/jcph.1995.1168, J. Comput. Phys. 120 (1995), 323-339. (1995) Zbl0845.76064DOI10.1006/jcph.1995.1168
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.