Kinetic BGK model for a crowd: Crowd characterized by a state of equilibrium

Abdelghani El Mousaoui; Pierre Argoul; Mohammed El Rhabi; Abdelilah Hakim

Applications of Mathematics (2021)

  • Volume: 66, Issue: 1, page 145-176
  • ISSN: 0862-7940

Abstract

top
This article focuses on dynamic description of the collective pedestrian motion based on the kinetic model of Bhatnagar-Gross-Krook. The proposed mathematical model is based on a tendency of pedestrians to reach a state of equilibrium within a certain time of relaxation. An approximation of the Maxwellian function representing this equilibrium state is determined. A result of the existence and uniqueness of the discrete velocity model is demonstrated. Thus, the convergence of the solution to that of the continuous BGK equation is proven. Numerical simulations are presented to validate the proposed mathematical model.

How to cite

top

El Mousaoui, Abdelghani, et al. "Kinetic BGK model for a crowd: Crowd characterized by a state of equilibrium." Applications of Mathematics 66.1 (2021): 145-176. <http://eudml.org/doc/297315>.

@article{ElMousaoui2021,
abstract = {This article focuses on dynamic description of the collective pedestrian motion based on the kinetic model of Bhatnagar-Gross-Krook. The proposed mathematical model is based on a tendency of pedestrians to reach a state of equilibrium within a certain time of relaxation. An approximation of the Maxwellian function representing this equilibrium state is determined. A result of the existence and uniqueness of the discrete velocity model is demonstrated. Thus, the convergence of the solution to that of the continuous BGK equation is proven. Numerical simulations are presented to validate the proposed mathematical model.},
author = {El Mousaoui, Abdelghani, Argoul, Pierre, El Rhabi, Mohammed, Hakim, Abdelilah},
journal = {Applications of Mathematics},
keywords = {discrete kinetic theory; crowd dynamics; BGK model; semi-Lagrangian schemes},
language = {eng},
number = {1},
pages = {145-176},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Kinetic BGK model for a crowd: Crowd characterized by a state of equilibrium},
url = {http://eudml.org/doc/297315},
volume = {66},
year = {2021},
}

TY - JOUR
AU - El Mousaoui, Abdelghani
AU - Argoul, Pierre
AU - El Rhabi, Mohammed
AU - Hakim, Abdelilah
TI - Kinetic BGK model for a crowd: Crowd characterized by a state of equilibrium
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 145
EP - 176
AB - This article focuses on dynamic description of the collective pedestrian motion based on the kinetic model of Bhatnagar-Gross-Krook. The proposed mathematical model is based on a tendency of pedestrians to reach a state of equilibrium within a certain time of relaxation. An approximation of the Maxwellian function representing this equilibrium state is determined. A result of the existence and uniqueness of the discrete velocity model is demonstrated. Thus, the convergence of the solution to that of the continuous BGK equation is proven. Numerical simulations are presented to validate the proposed mathematical model.
LA - eng
KW - discrete kinetic theory; crowd dynamics; BGK model; semi-Lagrangian schemes
UR - http://eudml.org/doc/297315
ER -

References

top
  1. Agnelli, J. P., Colasuonno, F., Knopoff, D., 10.1142/S0218202515500049, Math. Models Methods Appl. Sci. 25 (2015), 109-129. (2015) Zbl1309.35176MR3277286DOI10.1142/S0218202515500049
  2. Bellomo, N., 10.1007/978-0-8176-4600-4, Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (2008). (2008) Zbl1140.91007MR2359781DOI10.1007/978-0-8176-4600-4
  3. Bellomo, N., Bellouquid, A., 10.3934/nhm.2011.6.383, Netw. Heterog. Media 6 (2011), 383-399. (2011) Zbl1260.90052MR2826751DOI10.3934/nhm.2011.6.383
  4. Bellomo, N., Gibelli, L., 10.1142/S0218202515400138, Math. Models Methods Appl. Sci. 25 (2015), 2417-2437. (2015) Zbl1325.91042MR3397538DOI10.1142/S0218202515400138
  5. Bellomo, N., Gibelli, L., 10.1016/j.compfluid.2016.04.022, Comput. Fluids 141 (2016), 13-21. (2016) Zbl1390.65030MR3569212DOI10.1016/j.compfluid.2016.04.022
  6. Bouchut, F., 10.1142/9789814354165_0006, Advances in Kinetic Theory and Computing Series on Advances in Mathematics for Applied Sciences 22. World Scientific, Singapore (1994), 171-190. (1994) Zbl0863.76068MR1323183DOI10.1142/9789814354165_0006
  7. Bouchut, F., James, F., 10.1080/03605309908821498, Commun. Partial Differ. Equations 24 (1999), 2173-2189. (1999) Zbl0937.35098MR1720754DOI10.1080/03605309908821498
  8. Buet, C., 10.1080/00411459608204829, Transp. Theory Stat. Phys. 25 (1996), 33-60. (1996) Zbl0857.76079MR1380030DOI10.1080/00411459608204829
  9. Burini, D., Gibelli, L., Outada, N., 10.1007/978-3-319-49996-3_6, Modeling and Simulation in Science, Engineering and Technology. Active Particles. Vol. 1 Birkhäuser, Cham (2017), 229-258. (2017) Zbl1368.00045MR3644592DOI10.1007/978-3-319-49996-3_6
  10. Colombo, R. M., Rosini, M. D., 10.1016/j.nonrwa.2008.08.002, Nonlinear Anal., Real World Appl. 10 (2009), 2716-2728. (2009) Zbl1169.35360MR2523235DOI10.1016/j.nonrwa.2008.08.002
  11. Cristiani, E., Piccoli, B., Tosin, A., 10.1007/978-3-319-06620-2, MS&A. Modeling, Simulation and Applications 12. Springer, Cham (2014). (2014) Zbl1314.00081MR3308728DOI10.1007/978-3-319-06620-2
  12. Dimarco, G., Loubere, R., 10.1016/j.jcp.2012.10.058, J. Comput. Phys. 255 (2013), 680-698. (2013) Zbl1349.76674MR3109810DOI10.1016/j.jcp.2012.10.058
  13. Dimarco, G., Motsch, S., 10.1142/S0218202516500330, Math. Models Methods Appl. Sci. 26 (2016), 1385-1410. (2016) Zbl1341.35170MR3494681DOI10.1142/S0218202516500330
  14. Dunford, N., Schwartz, J. T., Linear Operators. Part I: General Theory, Wiley Classics Library. John Wiley & Sons, New York (1988). (1988) Zbl0635.47001MR1009162
  15. El-Amrani, M., Seaïd, M., 10.1002/num.20288, Numer. Methods Partial Differ. Equations 24 (2008), 776-798. (2008) Zbl1143.65075MR2402574DOI10.1002/num.20288
  16. Elmoussaoui, A., Argoul, P., Rhabi, M. El, Hakim, A., 10.1016/j.camwa.2017.10.023, Comput. Math. Appl. 75 (2018), 1159-1180. (2018) Zbl1409.82013MR3766510DOI10.1016/j.camwa.2017.10.023
  17. Golse, F., Lions, P.-L., Perthame, B., Sentis, R., 10.1016/0022-1236(88)90051-1, J. Funct. Anal. 76 (1988), 110-125. (1988) Zbl0652.47031MR0923047DOI10.1016/0022-1236(88)90051-1
  18. Helbing, D., 10.1002/bs.3830360405, Behavioral Science 36 (1991), 298-310. (1991) DOI10.1002/bs.3830360405
  19. Helbing, D., A fluid-dynamic model for the movement of pedestrians, Complex Syst. 6 (1992), 391-415. (1992) Zbl0776.92016MR1211939
  20. Helbing, D., Molnár, P., 10.1103/PhysRevE.51.4282, Phys. Rev. E 51 (1995), Article ID 4282. (1995) DOI10.1103/PhysRevE.51.4282
  21. Helbing, D., Molnár, P., Self-organization phenomena in pedestrian crowds, Self-Organization of Complex Structures: From Individual to Collective Dynamics Gordon and Breach, Reading (1997), 569-577 F. Schweitzer. (1997) Zbl0926.91068MR1487930
  22. Henderson, L. F., 10.1038/229381a0, Nature 229 (1971), 381-383. (1971) DOI10.1038/229381a0
  23. Henderson, L. F., 10.1016/0041-1647(74)90027-6, Transp. Research 8 (1974), 509-515. (1974) DOI10.1016/0041-1647(74)90027-6
  24. Henderson, L. F., Lyons, D. J., 10.1038/240353a0, Nature 240 (1972), 353-355. (1972) DOI10.1038/240353a0
  25. Hoogendoorn, S., Bovy, P. H., 10.3141/1710-04, Transp. Research Record 1710 (2000), 28-36. (2000) DOI10.3141/1710-04
  26. Issautier, D., 10.1137/S0036142994266856, SIAM J. Numer. Anal. 33 (1996), 2099-2119. (1996) Zbl0861.65128MR1427455DOI10.1137/S0036142994266856
  27. Lentine, M., Grétarsson, J. T., Fedkiw, R., 10.1016/j.jcp.2010.12.036, J. Comput. Phys. 230 (2011), 2857-2879. (2011) Zbl1316.76076MR2774321DOI10.1016/j.jcp.2010.12.036
  28. Mieussens, L., 10.1006/jcph.2000.6548, J. Comput. Phys. 162 (2000), 429-466. (2000) Zbl0984.76070MR1774264DOI10.1006/jcph.2000.6548
  29. Mieussens, L., 10.1016/S0898-1221(01)85008-2, Comput. Math. Appl. 41 (2001), 83-96. (2001) Zbl0980.82027MR1808507DOI10.1016/S0898-1221(01)85008-2
  30. Mischler, S., 10.1007/s002050050060, Arch. Ration. Mech. Anal. 140 (1997), 53-77. (1997) Zbl0898.76089MR1482928DOI10.1007/s002050050060
  31. Nishinari, K., Kirchner, A., Namazi, A., Schadschneider, A., Extended floor field CA model for evacuation dynamics, IEICE Trans. Inf. Syst. E87-D (2004), 726-732. (2004) 
  32. Panferov, V. A., Heintz, A. G., 10.1002/mma.303, Math. Methods Appl. Sci. 25 (2002), 571-593. (2002) Zbl0997.82036MR1895119DOI10.1002/mma.303
  33. Perthame, B., 10.1016/0022-0396(89)90173-3, J. Differ. Equations 82 (1989), 191-205. (1989) Zbl0694.35134MR1023307DOI10.1016/0022-0396(89)90173-3
  34. Perthame, B., Pulvirenti, M., 10.1007/BF00383223, Arch. Ration. Mech. Anal. 125 (1993), 289-295. (1993) Zbl0786.76072MR1245074DOI10.1007/BF00383223
  35. Reynolds, C. W., Steering behaviors for autonomous characters, Proceedings of Game Developers Conference San Francisco, Miller Freeman Game Group (1999), 763-782. (1999) 
  36. Ringeisen, E., Contributions a l'étude Mathématique des Equations Cinétiques: Thèse de Doctorat en Mathématique, Université Paris-Saclay, Paris (1991), French. (1991) 
  37. Rogier, F., Schneider, J., 10.1080/00411459408203868, Transp. Theory Stat. Phys. 23 (1994), 313-338. (1994) Zbl0811.76050MR1257657DOI10.1080/00411459408203868
  38. Still, G. K., 10.1201/b17097, CRC Press, Boca Raton (2014). (2014) DOI10.1201/b17097
  39. Stracquadanio, G., High Order Semi-Lagrangian Methods for BGK-Type Models in the Kinetic Theory of Rarefied Gases: PhD Thesis, Università degli Studi di Parma, Dipartimento di Matematica e Informatica, Parma (2015). (2015) 
  40. Yang, J. Y., Huang, J. C., 10.1006/jcph.1995.1168, J. Comput. Phys. 120 (1995), 323-339. (1995) Zbl0845.76064DOI10.1006/jcph.1995.1168

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.