Complex symmetric weighted composition operators on the Hardy space
Cao Jiang; Shi-An Han; Ze-Hua Zhou
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 3, page 817-831
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topJiang, Cao, Han, Shi-An, and Zhou, Ze-Hua. "Complex symmetric weighted composition operators on the Hardy space." Czechoslovak Mathematical Journal 70.3 (2020): 817-831. <http://eudml.org/doc/297318>.
@article{Jiang2020,
abstract = {This paper identifies a class of complex symmetric weighted composition operators on $H^2(\mathbb \{D\})$ that includes both the unitary and the Hermitian weighted composition operators, as well as a class of normal weighted composition operators identified by Bourdon and Narayan. A characterization of algebraic weighted composition operators with degree no more than two is provided to illustrate that the weight function of a complex symmetric weighted composition operator is not necessarily linear fractional.},
author = {Jiang, Cao, Han, Shi-An, Zhou, Ze-Hua},
journal = {Czechoslovak Mathematical Journal},
keywords = {complex symmetry; weighted composition operator; Hardy space},
language = {eng},
number = {3},
pages = {817-831},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Complex symmetric weighted composition operators on the Hardy space},
url = {http://eudml.org/doc/297318},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Jiang, Cao
AU - Han, Shi-An
AU - Zhou, Ze-Hua
TI - Complex symmetric weighted composition operators on the Hardy space
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 3
SP - 817
EP - 831
AB - This paper identifies a class of complex symmetric weighted composition operators on $H^2(\mathbb {D})$ that includes both the unitary and the Hermitian weighted composition operators, as well as a class of normal weighted composition operators identified by Bourdon and Narayan. A characterization of algebraic weighted composition operators with degree no more than two is provided to illustrate that the weight function of a complex symmetric weighted composition operator is not necessarily linear fractional.
LA - eng
KW - complex symmetry; weighted composition operator; Hardy space
UR - http://eudml.org/doc/297318
ER -
References
top- Bourdon, P. S., Narayan, S. K., 10.1016/j.jmaa.2010.01.006, J. Math. Anal. Appl. 367 (2010), 278-286. (2010) Zbl1195.47013MR2600397DOI10.1016/j.jmaa.2010.01.006
- Bourdon, P. S., Noor, S. Waleed, 10.1016/j.jmaa.2015.04.008, J. Math. Anal. Appl. 429 (2015), 105-110. (2015) Zbl1331.47039MR3339066DOI10.1016/j.jmaa.2015.04.008
- Cowen, C. C., Ko, E., 10.1090/S0002-9947-2010-05043-3, Trans. Am. Math. Soc. 362 (2010), 5771-5801. (2010) Zbl1213.47034MR2661496DOI10.1090/S0002-9947-2010-05043-3
- Cowen, C. C., MacCluer, B. D., 10.1201/9781315139920, Studies in Advanced Mathematics, CRC Press, Boca Raton (1995). (1995) Zbl0873.47017MR1397026DOI10.1201/9781315139920
- Gao, Y. X., Zhou, Z. H., 10.1512/iumj.2020.69.7622, Indiana Univ. Math. J. 69 (2020), 367-384. (2020) MR4084175DOI10.1512/iumj.2020.69.7622
- Garcia, S. R., Hammond, C., 10.1007/978-3-0348-0648-0_10, Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation Operator Theory: Advances and Applications 236, Birkhäuser/Springer, Basel (2014), 171-179. (2014) Zbl1343.47034MR3203059DOI10.1007/978-3-0348-0648-0_10
- Garcia, S. R., Putinar, M., 10.1090/S0002-9947-05-03742-6, Trans. Am. Math. Soc. 358 (2006), 1285-1315. (2006) Zbl1087.30031MR2187654DOI10.1090/S0002-9947-05-03742-6
- Garcia, S. R., Putinar, M., 10.1090/S0002-9947-07-04213-4, Trans. Am. Math. Soc. 359 (2007), 3913-3931. (2007) Zbl1123.47030MR2302518DOI10.1090/S0002-9947-07-04213-4
- Garcia, S. R., Wogen, W. R., 10.1016/j.jfa.2009.04.005, J. Funct. Anal. 257 (2009), 1251-1260. (2009) Zbl1166.47023MR2535469DOI10.1016/j.jfa.2009.04.005
- Garcia, S. R., Wogen, W. R., 10.1090/S0002-9947-2010-05068-8, Trans. Am. Math. Soc. 362 (2010), 6065-6077. (2010) Zbl1208.47036MR2661508DOI10.1090/S0002-9947-2010-05068-8
- Jung, S., Kim, Y., Ko, E., Lee, J., 10.1016/j.jfa.2014.04.004, J. Funct. Anal. 267 (2014), 323-351. (2014) Zbl1292.47014MR3210031DOI10.1016/j.jfa.2014.04.004
- Matache, V., 10.1007/978-3-319-70154-7_11, Complex Analysis and Dynamical Systems Trends in Mathematics, Birkhäuser, Cham (2018), 191-217. (2018) Zbl07004622MR3784172DOI10.1007/978-3-319-70154-7_11
- Narayan, S. K., Sievewright, D., Thompson, D., 10.1016/j.jmaa.2016.05.046, J. Math. Anal. Appl. 443 (2016), 625-630. (2016) Zbl1341.47030MR3508506DOI10.1016/j.jmaa.2016.05.046
- Shapiro, J. H., 10.1007/978-1-4612-0887-7, Universitext: Tracts in Mathematics, Springer, New York (1993). (1993) Zbl0791.30033MR1237406DOI10.1007/978-1-4612-0887-7
- Noor, S. Waleed, 10.1090/S0002-9939-2014-12029-6, Proc. Am. Math. Soc. 142 (2014), 3103-3107. (2014) Zbl1302.47039MR3223366DOI10.1090/S0002-9939-2014-12029-6
- Noor, S. Waleed, 10.1016/j.jfa.2015.06.019, J. Funct. Anal. 269 (2015), 1899-1901. (2015) Zbl06473179MR3373436DOI10.1016/j.jfa.2015.06.019
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.