Complex symmetric weighted composition operators on the Hardy space

Cao Jiang; Shi-An Han; Ze-Hua Zhou

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 3, page 817-831
  • ISSN: 0011-4642

Abstract

top
This paper identifies a class of complex symmetric weighted composition operators on H 2 ( 𝔻 ) that includes both the unitary and the Hermitian weighted composition operators, as well as a class of normal weighted composition operators identified by Bourdon and Narayan. A characterization of algebraic weighted composition operators with degree no more than two is provided to illustrate that the weight function of a complex symmetric weighted composition operator is not necessarily linear fractional.

How to cite

top

Jiang, Cao, Han, Shi-An, and Zhou, Ze-Hua. "Complex symmetric weighted composition operators on the Hardy space." Czechoslovak Mathematical Journal 70.3 (2020): 817-831. <http://eudml.org/doc/297318>.

@article{Jiang2020,
abstract = {This paper identifies a class of complex symmetric weighted composition operators on $H^2(\mathbb \{D\})$ that includes both the unitary and the Hermitian weighted composition operators, as well as a class of normal weighted composition operators identified by Bourdon and Narayan. A characterization of algebraic weighted composition operators with degree no more than two is provided to illustrate that the weight function of a complex symmetric weighted composition operator is not necessarily linear fractional.},
author = {Jiang, Cao, Han, Shi-An, Zhou, Ze-Hua},
journal = {Czechoslovak Mathematical Journal},
keywords = {complex symmetry; weighted composition operator; Hardy space},
language = {eng},
number = {3},
pages = {817-831},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Complex symmetric weighted composition operators on the Hardy space},
url = {http://eudml.org/doc/297318},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Jiang, Cao
AU - Han, Shi-An
AU - Zhou, Ze-Hua
TI - Complex symmetric weighted composition operators on the Hardy space
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 3
SP - 817
EP - 831
AB - This paper identifies a class of complex symmetric weighted composition operators on $H^2(\mathbb {D})$ that includes both the unitary and the Hermitian weighted composition operators, as well as a class of normal weighted composition operators identified by Bourdon and Narayan. A characterization of algebraic weighted composition operators with degree no more than two is provided to illustrate that the weight function of a complex symmetric weighted composition operator is not necessarily linear fractional.
LA - eng
KW - complex symmetry; weighted composition operator; Hardy space
UR - http://eudml.org/doc/297318
ER -

References

top
  1. Bourdon, P. S., Narayan, S. K., 10.1016/j.jmaa.2010.01.006, J. Math. Anal. Appl. 367 (2010), 278-286. (2010) Zbl1195.47013MR2600397DOI10.1016/j.jmaa.2010.01.006
  2. Bourdon, P. S., Noor, S. Waleed, 10.1016/j.jmaa.2015.04.008, J. Math. Anal. Appl. 429 (2015), 105-110. (2015) Zbl1331.47039MR3339066DOI10.1016/j.jmaa.2015.04.008
  3. Cowen, C. C., Ko, E., 10.1090/S0002-9947-2010-05043-3, Trans. Am. Math. Soc. 362 (2010), 5771-5801. (2010) Zbl1213.47034MR2661496DOI10.1090/S0002-9947-2010-05043-3
  4. Cowen, C. C., MacCluer, B. D., 10.1201/9781315139920, Studies in Advanced Mathematics, CRC Press, Boca Raton (1995). (1995) Zbl0873.47017MR1397026DOI10.1201/9781315139920
  5. Gao, Y. X., Zhou, Z. H., 10.1512/iumj.2020.69.7622, Indiana Univ. Math. J. 69 (2020), 367-384. (2020) MR4084175DOI10.1512/iumj.2020.69.7622
  6. Garcia, S. R., Hammond, C., 10.1007/978-3-0348-0648-0_10, Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation Operator Theory: Advances and Applications 236, Birkhäuser/Springer, Basel (2014), 171-179. (2014) Zbl1343.47034MR3203059DOI10.1007/978-3-0348-0648-0_10
  7. Garcia, S. R., Putinar, M., 10.1090/S0002-9947-05-03742-6, Trans. Am. Math. Soc. 358 (2006), 1285-1315. (2006) Zbl1087.30031MR2187654DOI10.1090/S0002-9947-05-03742-6
  8. Garcia, S. R., Putinar, M., 10.1090/S0002-9947-07-04213-4, Trans. Am. Math. Soc. 359 (2007), 3913-3931. (2007) Zbl1123.47030MR2302518DOI10.1090/S0002-9947-07-04213-4
  9. Garcia, S. R., Wogen, W. R., 10.1016/j.jfa.2009.04.005, J. Funct. Anal. 257 (2009), 1251-1260. (2009) Zbl1166.47023MR2535469DOI10.1016/j.jfa.2009.04.005
  10. Garcia, S. R., Wogen, W. R., 10.1090/S0002-9947-2010-05068-8, Trans. Am. Math. Soc. 362 (2010), 6065-6077. (2010) Zbl1208.47036MR2661508DOI10.1090/S0002-9947-2010-05068-8
  11. Jung, S., Kim, Y., Ko, E., Lee, J., 10.1016/j.jfa.2014.04.004, J. Funct. Anal. 267 (2014), 323-351. (2014) Zbl1292.47014MR3210031DOI10.1016/j.jfa.2014.04.004
  12. Matache, V., 10.1007/978-3-319-70154-7_11, Complex Analysis and Dynamical Systems Trends in Mathematics, Birkhäuser, Cham (2018), 191-217. (2018) Zbl07004622MR3784172DOI10.1007/978-3-319-70154-7_11
  13. Narayan, S. K., Sievewright, D., Thompson, D., 10.1016/j.jmaa.2016.05.046, J. Math. Anal. Appl. 443 (2016), 625-630. (2016) Zbl1341.47030MR3508506DOI10.1016/j.jmaa.2016.05.046
  14. Shapiro, J. H., 10.1007/978-1-4612-0887-7, Universitext: Tracts in Mathematics, Springer, New York (1993). (1993) Zbl0791.30033MR1237406DOI10.1007/978-1-4612-0887-7
  15. Noor, S. Waleed, 10.1090/S0002-9939-2014-12029-6, Proc. Am. Math. Soc. 142 (2014), 3103-3107. (2014) Zbl1302.47039MR3223366DOI10.1090/S0002-9939-2014-12029-6
  16. Noor, S. Waleed, 10.1016/j.jfa.2015.06.019, J. Funct. Anal. 269 (2015), 1899-1901. (2015) Zbl06473179MR3373436DOI10.1016/j.jfa.2015.06.019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.