A semilattice of varieties of completely regular semigroups
Mathematica Bohemica (2020)
- Volume: 145, Issue: 1, page 1-14
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topPetrich, Mario. "A semilattice of varieties of completely regular semigroups." Mathematica Bohemica 145.1 (2020): 1-14. <http://eudml.org/doc/297320>.
@article{Petrich2020,
abstract = {Completely regular semigroups are unions of their (maximal) subgroups with the unary operation within their maximal subgroups. As such they form a variety whose lattice of subvarieties is denoted by $\mathcal \{L\}(\mathcal \{C\}\mathcal \{R\})$. We construct a 60-element $\cap $-subsemilattice and a 38-element sublattice of $\mathcal \{L\}(\mathcal \{C\}\mathcal \{R\})$. The bulk of the paper consists in establishing the necessary joins for which it uses Polák’s theorem.},
author = {Petrich, Mario},
journal = {Mathematica Bohemica},
keywords = {completely regular semigroup; lattice; variety; $\cap $-subsemilattice},
language = {eng},
number = {1},
pages = {1-14},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A semilattice of varieties of completely regular semigroups},
url = {http://eudml.org/doc/297320},
volume = {145},
year = {2020},
}
TY - JOUR
AU - Petrich, Mario
TI - A semilattice of varieties of completely regular semigroups
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 1
SP - 1
EP - 14
AB - Completely regular semigroups are unions of their (maximal) subgroups with the unary operation within their maximal subgroups. As such they form a variety whose lattice of subvarieties is denoted by $\mathcal {L}(\mathcal {C}\mathcal {R})$. We construct a 60-element $\cap $-subsemilattice and a 38-element sublattice of $\mathcal {L}(\mathcal {C}\mathcal {R})$. The bulk of the paper consists in establishing the necessary joins for which it uses Polák’s theorem.
LA - eng
KW - completely regular semigroup; lattice; variety; $\cap $-subsemilattice
UR - http://eudml.org/doc/297320
ER -
References
top- Hall, T. E., Jones, P. R., 10.2140/pjm.1980.91.327, Pac. J. Math. 91 (1980), 327-337. (1980) Zbl0419.20043MR0615681DOI10.2140/pjm.1980.91.327
- Jones, P. R., 10.1017/S1446788700028226, J. Aust. Math. Soc., Ser. A 42 (1987), 227-246. (1987) Zbl0613.20038MR0869748DOI10.1017/S1446788700028226
- Liu, G., Zhang, J., 10.1007/s00233-006-0619-0, Semigroup Forum 73 (2006), 261-266. (2006) Zbl1114.20034MR2280823DOI10.1007/s00233-006-0619-0
- Pastijn, F., 10.1017/S1446788700030214, J. Aust. Math. Soc., Ser. A 49 (1990), 24-42. (1990) Zbl0706.20042MR1054080DOI10.1017/S1446788700030214
- Petrich, M., 10.2140/pjm.1975.58.209, Pac. J. Math. 58 (1975), 209-217. (1975) Zbl0317.20042MR0382522DOI10.2140/pjm.1975.58.209
- Petrich, M., 10.1007/BF02573595, Semigroup Forum 25 (1982), 153-169. (1982) Zbl0502.20034MR0663176DOI10.1007/BF02573595
- Petrich, M., 10.1080/00927872.2012.667181, Commun. Algebra 42 (2014), 1397-1413. (2014) Zbl1302.20059MR3169638DOI10.1080/00927872.2012.667181
- Petrich, M., 10.1080/00927872.2014.907412, Commun. Algebra 43 (2015), 4080-4096. (2015) Zbl1339.20053MR3366561DOI10.1080/00927872.2014.907412
- Petrich, M., 10.1007/s00233-016-9817-6, Semigroup Forum 93 (2016), 607-628. (2016) Zbl06688592MR3572420DOI10.1007/s00233-016-9817-6
- Petrich, M., Reilly, N. R., 10.2140/pjm.1988.132.151, Pac. J. Math. 132 (1988), 151-175. (1988) Zbl0598.20061MR0929587DOI10.2140/pjm.1988.132.151
- Petrich, M., Reilly, N. R., 10.1016/0021-8693(90)90207-5, J. Algebra 134 (1990), 1-27. (1990) Zbl0706.20043MR1068411DOI10.1016/0021-8693(90)90207-5
- Petrich, M., Reilly, N. R., 10.1017/s1446788700030202, J. Aust. Math. Soc., Ser. A 49 (1990), 1-23. (1990) Zbl0708.20019MR1054079DOI10.1017/s1446788700030202
- Petrich, M., Reilly, N. R., Completely Regular Semigroups, Canadian Mathematical Society Series of Monographs and Advanced Texts 23. Wiley, Chichester (1999). (1999) Zbl0967.20034MR1684919
- Polák, L., 10.1007/BF02575527, Semigroup Forum 32 (1985), 97-123. (1985) Zbl0564.20034MR0803483DOI10.1007/BF02575527
- Polák, L., 10.1007/BF02575021, Semigroup Forum 36 (1987), 253-284. (1987) Zbl0638.20032MR0916425DOI10.1007/BF02575021
- Reilly, N. R., 10.1017/S144678870002365X, J. Aust. Math. Soc., Ser. A 38 (1985), 372-393. (1985) Zbl0572.20040MR0779201DOI10.1017/S144678870002365X
- Trotter, P. G., 10.1017/S0004972700003269, Bull. Aust. Math. Soc. 39 (1989), 343-351. (1989) Zbl0661.20039MR0995132DOI10.1017/S0004972700003269
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.