A semilattice of varieties of completely regular semigroups

Mario Petrich

Mathematica Bohemica (2020)

  • Volume: 145, Issue: 1, page 1-14
  • ISSN: 0862-7959

Abstract

top
Completely regular semigroups are unions of their (maximal) subgroups with the unary operation within their maximal subgroups. As such they form a variety whose lattice of subvarieties is denoted by ( 𝒞 ) . We construct a 60-element -subsemilattice and a 38-element sublattice of ( 𝒞 ) . The bulk of the paper consists in establishing the necessary joins for which it uses Polák’s theorem.

How to cite

top

Petrich, Mario. "A semilattice of varieties of completely regular semigroups." Mathematica Bohemica 145.1 (2020): 1-14. <http://eudml.org/doc/297320>.

@article{Petrich2020,
abstract = {Completely regular semigroups are unions of their (maximal) subgroups with the unary operation within their maximal subgroups. As such they form a variety whose lattice of subvarieties is denoted by $\mathcal \{L\}(\mathcal \{C\}\mathcal \{R\})$. We construct a 60-element $\cap $-subsemilattice and a 38-element sublattice of $\mathcal \{L\}(\mathcal \{C\}\mathcal \{R\})$. The bulk of the paper consists in establishing the necessary joins for which it uses Polák’s theorem.},
author = {Petrich, Mario},
journal = {Mathematica Bohemica},
keywords = {completely regular semigroup; lattice; variety; $\cap $-subsemilattice},
language = {eng},
number = {1},
pages = {1-14},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A semilattice of varieties of completely regular semigroups},
url = {http://eudml.org/doc/297320},
volume = {145},
year = {2020},
}

TY - JOUR
AU - Petrich, Mario
TI - A semilattice of varieties of completely regular semigroups
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 1
SP - 1
EP - 14
AB - Completely regular semigroups are unions of their (maximal) subgroups with the unary operation within their maximal subgroups. As such they form a variety whose lattice of subvarieties is denoted by $\mathcal {L}(\mathcal {C}\mathcal {R})$. We construct a 60-element $\cap $-subsemilattice and a 38-element sublattice of $\mathcal {L}(\mathcal {C}\mathcal {R})$. The bulk of the paper consists in establishing the necessary joins for which it uses Polák’s theorem.
LA - eng
KW - completely regular semigroup; lattice; variety; $\cap $-subsemilattice
UR - http://eudml.org/doc/297320
ER -

References

top
  1. Hall, T. E., Jones, P. R., 10.2140/pjm.1980.91.327, Pac. J. Math. 91 (1980), 327-337. (1980) Zbl0419.20043MR0615681DOI10.2140/pjm.1980.91.327
  2. Jones, P. R., 10.1017/S1446788700028226, J. Aust. Math. Soc., Ser. A 42 (1987), 227-246. (1987) Zbl0613.20038MR0869748DOI10.1017/S1446788700028226
  3. Liu, G., Zhang, J., 10.1007/s00233-006-0619-0, Semigroup Forum 73 (2006), 261-266. (2006) Zbl1114.20034MR2280823DOI10.1007/s00233-006-0619-0
  4. Pastijn, F., 10.1017/S1446788700030214, J. Aust. Math. Soc., Ser. A 49 (1990), 24-42. (1990) Zbl0706.20042MR1054080DOI10.1017/S1446788700030214
  5. Petrich, M., 10.2140/pjm.1975.58.209, Pac. J. Math. 58 (1975), 209-217. (1975) Zbl0317.20042MR0382522DOI10.2140/pjm.1975.58.209
  6. Petrich, M., 10.1007/BF02573595, Semigroup Forum 25 (1982), 153-169. (1982) Zbl0502.20034MR0663176DOI10.1007/BF02573595
  7. Petrich, M., 10.1080/00927872.2012.667181, Commun. Algebra 42 (2014), 1397-1413. (2014) Zbl1302.20059MR3169638DOI10.1080/00927872.2012.667181
  8. Petrich, M., 10.1080/00927872.2014.907412, Commun. Algebra 43 (2015), 4080-4096. (2015) Zbl1339.20053MR3366561DOI10.1080/00927872.2014.907412
  9. Petrich, M., 10.1007/s00233-016-9817-6, Semigroup Forum 93 (2016), 607-628. (2016) Zbl06688592MR3572420DOI10.1007/s00233-016-9817-6
  10. Petrich, M., Reilly, N. R., 10.2140/pjm.1988.132.151, Pac. J. Math. 132 (1988), 151-175. (1988) Zbl0598.20061MR0929587DOI10.2140/pjm.1988.132.151
  11. Petrich, M., Reilly, N. R., 10.1016/0021-8693(90)90207-5, J. Algebra 134 (1990), 1-27. (1990) Zbl0706.20043MR1068411DOI10.1016/0021-8693(90)90207-5
  12. Petrich, M., Reilly, N. R., 10.1017/s1446788700030202, J. Aust. Math. Soc., Ser. A 49 (1990), 1-23. (1990) Zbl0708.20019MR1054079DOI10.1017/s1446788700030202
  13. Petrich, M., Reilly, N. R., Completely Regular Semigroups, Canadian Mathematical Society Series of Monographs and Advanced Texts 23. Wiley, Chichester (1999). (1999) Zbl0967.20034MR1684919
  14. Polák, L., 10.1007/BF02575527, Semigroup Forum 32 (1985), 97-123. (1985) Zbl0564.20034MR0803483DOI10.1007/BF02575527
  15. Polák, L., 10.1007/BF02575021, Semigroup Forum 36 (1987), 253-284. (1987) Zbl0638.20032MR0916425DOI10.1007/BF02575021
  16. Reilly, N. R., 10.1017/S144678870002365X, J. Aust. Math. Soc., Ser. A 38 (1985), 372-393. (1985) Zbl0572.20040MR0779201DOI10.1017/S144678870002365X
  17. Trotter, P. G., 10.1017/S0004972700003269, Bull. Aust. Math. Soc. 39 (1989), 343-351. (1989) Zbl0661.20039MR0995132DOI10.1017/S0004972700003269

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.