On products of some Toeplitz operators on polyanalytic Fock spaces
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 2, page 369-379
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCasseli, Irène. "On products of some Toeplitz operators on polyanalytic Fock spaces." Czechoslovak Mathematical Journal 70.2 (2020): 369-379. <http://eudml.org/doc/297321>.
@article{Casseli2020,
abstract = {The purpose of this paper is to study the Sarason’s problem on Fock spaces of polyanalytic functions. Namely, given two polyanalytic symbols $f$ and $g$, we establish a necessary and sufficient condition for the boundedness of some Toeplitz products $ T_\{f\}T_\{\bar\{g\}\}$ subjected to certain restriction on $f$ and $g$. We also characterize this property in terms of the Berezin transform.},
author = {Casseli, Irène},
journal = {Czechoslovak Mathematical Journal},
keywords = {polyanalytic function; Toeplitz operator; Fock space; Sarason's problem},
language = {eng},
number = {2},
pages = {369-379},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On products of some Toeplitz operators on polyanalytic Fock spaces},
url = {http://eudml.org/doc/297321},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Casseli, Irène
TI - On products of some Toeplitz operators on polyanalytic Fock spaces
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 2
SP - 369
EP - 379
AB - The purpose of this paper is to study the Sarason’s problem on Fock spaces of polyanalytic functions. Namely, given two polyanalytic symbols $f$ and $g$, we establish a necessary and sufficient condition for the boundedness of some Toeplitz products $ T_{f}T_{\bar{g}}$ subjected to certain restriction on $f$ and $g$. We also characterize this property in terms of the Berezin transform.
LA - eng
KW - polyanalytic function; Toeplitz operator; Fock space; Sarason's problem
UR - http://eudml.org/doc/297321
ER -
References
top- Abreu, L. D., 10.1007/s00605-009-0177-0, Monatsh. Math. 161 (2010), 237-253. (2010) Zbl1206.46029MR2726212DOI10.1007/s00605-009-0177-0
- Aleman, A., Pott, S., Reguera, M. C., 10.1093/imrn/rnw134, Int. Math. Res. Not. 2017 (2017), 4320-4349. (2017) Zbl1405.30055MR3674172DOI10.1093/imrn/rnw134
- Askour, N., Intissar, A., Mouayn, Z., 10.1016/S0764-4442(97)80045-6, C. R. Acad. Sci., Paris, Sér. I, Math. 325 (1997), 707-712 French. (1997) Zbl0892.32018MR1483703DOI10.1016/S0764-4442(97)80045-6
- Balk, M. B., Polyanalytic Functions, Mathematical Research 63. Akademie Verlag, Berlin (1991). (1991) Zbl0764.30038MR1184141
- Bommier-Hato, H., Youssfi, E. H., Zhu, K., 10.1016/j.bulsci.2017.03.002, Bull. Sci. Math. 141 (2017), 408-442. (2017) Zbl1377.47010MR3667593DOI10.1016/j.bulsci.2017.03.002
- Cho, H. R., Park, J.-D., Zhu, K., 10.1090/S0002-9939-2014-12110-1, Proc. Am. Math. Soc. 142 (2014), 2483-2489. (2014) Zbl1303.47035MR3195769DOI10.1090/S0002-9939-2014-12110-1
- Haimi, A., Hedenmalm, H., 10.1007/s10955-013-0813-x, J. Stat. Phys. 153 (2013), 10-47. (2013) Zbl1278.82068MR3100813DOI10.1007/s10955-013-0813-x
- Nazarov, F., A counterexample to Sarason's conjecture, Available at http://users.math.msu.edu/users/fedja/prepr.html.
- Sarason, D., Exposed points in . I, The Gohberg Anniversary Collection, Vol. II Operator Theory: Advances and Applications 41. Birkhäuser, Basel (1989), 485-496. (1989) Zbl0678.46019MR1038352
- Sarason, D., 10.1007/BFb0100208, Linear and Complex Analysis. Problem Book 3, Part I V. P. Havin, N. K. Nikolskii Lecture Notes in Mathematics 1573. Springer, Berlin (1994), 318-319. (1994) Zbl0893.30036MR1334345DOI10.1007/BFb0100208
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.