Fermat -Fibonacci and -Lucas numbers
Jhon J. Bravo; Jose L. Herrera
Mathematica Bohemica (2020)
- Volume: 145, Issue: 1, page 19-32
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBravo, Jhon J., and Herrera, Jose L.. "Fermat $k$-Fibonacci and $k$-Lucas numbers." Mathematica Bohemica 145.1 (2020): 19-32. <http://eudml.org/doc/297334>.
@article{Bravo2020,
abstract = {Using the lower bound of linear forms in logarithms of Matveev and the theory of continued fractions by means of a variation of a result of Dujella and Pethő, we find all $k$-Fibonacci and $k$-Lucas numbers which are Fermat numbers. Some more general results are given.},
author = {Bravo, Jhon J., Herrera, Jose L.},
journal = {Mathematica Bohemica},
keywords = {generalized Fibonacci number; Fermat number; linear form in logarithms; reduction method},
language = {eng},
number = {1},
pages = {19-32},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Fermat $k$-Fibonacci and $k$-Lucas numbers},
url = {http://eudml.org/doc/297334},
volume = {145},
year = {2020},
}
TY - JOUR
AU - Bravo, Jhon J.
AU - Herrera, Jose L.
TI - Fermat $k$-Fibonacci and $k$-Lucas numbers
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 1
SP - 19
EP - 32
AB - Using the lower bound of linear forms in logarithms of Matveev and the theory of continued fractions by means of a variation of a result of Dujella and Pethő, we find all $k$-Fibonacci and $k$-Lucas numbers which are Fermat numbers. Some more general results are given.
LA - eng
KW - generalized Fibonacci number; Fermat number; linear form in logarithms; reduction method
UR - http://eudml.org/doc/297334
ER -
References
top- Bravo, E. F., Bravo, J. J., Luca, F., Coincidences in generalized Lucas sequences, Fibonacci Q. 52 (2014), 296-306. (2014) Zbl1375.11014MR3276052
- Bravo, J. J., Gómez, C. A., Luca, F., 10.18514/MMN.2016.1505, Miskolc Math. Notes 17 (2016), 85-100. (2016) Zbl1389.11041MR3527869DOI10.18514/MMN.2016.1505
- Bravo, J. J., Luca, F., Powers of two in generalized Fibonacci sequences, Rev. Colomb. Mat. 46 (2012), 67-79. (2012) Zbl1353.11020MR2945671
- Bravo, J. J., Luca, F., 10.5486/PMD.2013.5390, Publ. Math. 82 (2013), 623-639. (2013) Zbl1274.11035MR3066434DOI10.5486/PMD.2013.5390
- Bravo, J. J., Luca, F., 10.1007/s12044-014-0174-7, Proc. Indian Acad. Sci., Math. Sci. 124 (2014), 141-154. (2014) Zbl1382.11019MR3218885DOI10.1007/s12044-014-0174-7
- Dresden, G. P., Du, Z., A simplified Binet formula for -generalized Fibonacci numbers, J. Integer Seq. 17 (2014), Article No. 14.4.7, 9 pages. (2014) Zbl1360.11031MR3181762
- Dujella, A., Pethő, A., 10.1093/qjmath/49.195.291, Quart. J. Math., Oxf. II. Ser. 49 (1998), 291-306. (1998) Zbl0911.11018MR1645552DOI10.1093/qjmath/49.195.291
- Finkelstein, R., 10.1515/crll.1973.262-263.171, J. Reine Angew. Math. 262/263 (1973), 171-178. (1973) Zbl0265.10008MR0325511DOI10.1515/crll.1973.262-263.171
- Finkelstein, R., On Lucas numbers which are one more than a square, Fibonacci Q. 136 (1975), 340-342. (1975) Zbl0319.10011MR0422134
- Hua, L. K., Wang, Y., Applications of Number Theory to Numerical Analysis, Springer, Berlin; Science Press, Beijing (1981). (1981) Zbl0451.10001MR0617192
- Luca, F., Fibonacci and Lucas numbers with only one distinct digit, Port. Math. 57 (2000), 243-254. (2000) Zbl0958.11007MR1759818
- Marques, D., On -generalized Fibonacci numbers with only one distinct digit, Util. Math. 98 (2015), 23-31. (2015) Zbl1369.11014MR3410879
- Matveev, E. M., 10.1070/IM2000v064n06ABEH000314, Izv. Math. 64 (2000), 1217-1269 translated from Izv. Ross. Akad. Nauk Ser. Mat. 64 2000 125-180. (2000) Zbl1013.11043MR1817252DOI10.1070/IM2000v064n06ABEH000314
- Noe, T. D., Post, J. Vos, Primes in Fibonacci -step and Lucas -step sequences, J. Integer Seq. 8 (2005), Article No. 05.4.4, 12 pages. (2005) Zbl1101.11008MR2165333
- Wolfram, D. A., Solving generalized Fibonacci recurrences, Fibonacci Q. 36 (1998), 129-145. (1998) Zbl0911.11014MR1622060
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.