Fermat k -Fibonacci and k -Lucas numbers

Jhon J. Bravo; Jose L. Herrera

Mathematica Bohemica (2020)

  • Volume: 145, Issue: 1, page 19-32
  • ISSN: 0862-7959

Abstract

top
Using the lower bound of linear forms in logarithms of Matveev and the theory of continued fractions by means of a variation of a result of Dujella and Pethő, we find all k -Fibonacci and k -Lucas numbers which are Fermat numbers. Some more general results are given.

How to cite

top

Bravo, Jhon J., and Herrera, Jose L.. "Fermat $k$-Fibonacci and $k$-Lucas numbers." Mathematica Bohemica 145.1 (2020): 19-32. <http://eudml.org/doc/297334>.

@article{Bravo2020,
abstract = {Using the lower bound of linear forms in logarithms of Matveev and the theory of continued fractions by means of a variation of a result of Dujella and Pethő, we find all $k$-Fibonacci and $k$-Lucas numbers which are Fermat numbers. Some more general results are given.},
author = {Bravo, Jhon J., Herrera, Jose L.},
journal = {Mathematica Bohemica},
keywords = {generalized Fibonacci number; Fermat number; linear form in logarithms; reduction method},
language = {eng},
number = {1},
pages = {19-32},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Fermat $k$-Fibonacci and $k$-Lucas numbers},
url = {http://eudml.org/doc/297334},
volume = {145},
year = {2020},
}

TY - JOUR
AU - Bravo, Jhon J.
AU - Herrera, Jose L.
TI - Fermat $k$-Fibonacci and $k$-Lucas numbers
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 1
SP - 19
EP - 32
AB - Using the lower bound of linear forms in logarithms of Matveev and the theory of continued fractions by means of a variation of a result of Dujella and Pethő, we find all $k$-Fibonacci and $k$-Lucas numbers which are Fermat numbers. Some more general results are given.
LA - eng
KW - generalized Fibonacci number; Fermat number; linear form in logarithms; reduction method
UR - http://eudml.org/doc/297334
ER -

References

top
  1. Bravo, E. F., Bravo, J. J., Luca, F., Coincidences in generalized Lucas sequences, Fibonacci Q. 52 (2014), 296-306. (2014) Zbl1375.11014MR3276052
  2. Bravo, J. J., Gómez, C. A., Luca, F., 10.18514/MMN.2016.1505, Miskolc Math. Notes 17 (2016), 85-100. (2016) Zbl1389.11041MR3527869DOI10.18514/MMN.2016.1505
  3. Bravo, J. J., Luca, F., Powers of two in generalized Fibonacci sequences, Rev. Colomb. Mat. 46 (2012), 67-79. (2012) Zbl1353.11020MR2945671
  4. Bravo, J. J., Luca, F., 10.5486/PMD.2013.5390, Publ. Math. 82 (2013), 623-639. (2013) Zbl1274.11035MR3066434DOI10.5486/PMD.2013.5390
  5. Bravo, J. J., Luca, F., 10.1007/s12044-014-0174-7, Proc. Indian Acad. Sci., Math. Sci. 124 (2014), 141-154. (2014) Zbl1382.11019MR3218885DOI10.1007/s12044-014-0174-7
  6. Dresden, G. P., Du, Z., A simplified Binet formula for k -generalized Fibonacci numbers, J. Integer Seq. 17 (2014), Article No. 14.4.7, 9 pages. (2014) Zbl1360.11031MR3181762
  7. Dujella, A., Pethő, A., 10.1093/qjmath/49.195.291, Quart. J. Math., Oxf. II. Ser. 49 (1998), 291-306. (1998) Zbl0911.11018MR1645552DOI10.1093/qjmath/49.195.291
  8. Finkelstein, R., 10.1515/crll.1973.262-263.171, J. Reine Angew. Math. 262/263 (1973), 171-178. (1973) Zbl0265.10008MR0325511DOI10.1515/crll.1973.262-263.171
  9. Finkelstein, R., On Lucas numbers which are one more than a square, Fibonacci Q. 136 (1975), 340-342. (1975) Zbl0319.10011MR0422134
  10. Hua, L. K., Wang, Y., Applications of Number Theory to Numerical Analysis, Springer, Berlin; Science Press, Beijing (1981). (1981) Zbl0451.10001MR0617192
  11. Luca, F., Fibonacci and Lucas numbers with only one distinct digit, Port. Math. 57 (2000), 243-254. (2000) Zbl0958.11007MR1759818
  12. Marques, D., On k -generalized Fibonacci numbers with only one distinct digit, Util. Math. 98 (2015), 23-31. (2015) Zbl1369.11014MR3410879
  13. Matveev, E. M., 10.1070/IM2000v064n06ABEH000314, Izv. Math. 64 (2000), 1217-1269 translated from Izv. Ross. Akad. Nauk Ser. Mat. 64 2000 125-180. (2000) Zbl1013.11043MR1817252DOI10.1070/IM2000v064n06ABEH000314
  14. Noe, T. D., Post, J. Vos, Primes in Fibonacci n -step and Lucas n -step sequences, J. Integer Seq. 8 (2005), Article No. 05.4.4, 12 pages. (2005) Zbl1101.11008MR2165333
  15. Wolfram, D. A., Solving generalized Fibonacci recurrences, Fibonacci Q. 36 (1998), 129-145. (1998) Zbl0911.11014MR1622060

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.