Matlis dual of local cohomology modules
Batoul Naal; Kazem Khashyarmanesh
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 1, page 1-7
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topNaal, Batoul, and Khashyarmanesh, Kazem. "Matlis dual of local cohomology modules." Czechoslovak Mathematical Journal 70.1 (2020): 1-7. <http://eudml.org/doc/297342>.
@article{Naal2020,
abstract = {Let $(R,\mathfrak \{m\})$ be a commutative Noetherian local ring, $\mathfrak \{a\}$ be an ideal of $R$ and $M$ a finitely generated $R$-module such that $\mathfrak \{a\} M\ne M$ and $\{\rm cd\}(\mathfrak \{a\},M) - \{\rm grade\}(\mathfrak \{a\},M)\le 1$, where $\{\rm cd\}(\mathfrak \{a\},M)$ is the cohomological dimension of $M$ with respect to $\mathfrak \{a\}$ and $\{\rm grade\}(\mathfrak \{a\},M)$ is the $M$-grade of $\mathfrak \{a\}$. Let $D(-) := \{\rm Hom\}_R(-,E)$ be the Matlis dual functor, where $E := E(R/\mathfrak \{m\})$ is the injective hull of the residue field $R/\mathfrak \{m\}$. We show that there exists the following long exact sequence \begin\{eqnarray*\} 0 \longrightarrow & H^\{n-2\}\_\{\mathfrak \{a\}\}(D(H^\{n-1\}\_\{\mathfrak \{a\}\}(M))) \longrightarrow H^\{n\}\_\{\mathfrak \{a\}\}(D(H^\{n\}\_\{\mathfrak \{a\}\}(M))) \longrightarrow D(M) \\ \longrightarrow & H^\{n-1\}\_\{\mathfrak \{a\}\}(D(H^\{n-1\}\_\{\mathfrak \{a\}\}(M))) \longrightarrow H^\{n+1\}\_\{\mathfrak \{a\}\}(D(H^\{n\}\_\{\mathfrak \{a\}\}(M))) \\ \longrightarrow & H^\{n\}\_\{\mathfrak \{a\}\}(D(H^\{n-1\}\_\{(x\_1, \ldots ,x\_\{n-1\})\}(M))) \longrightarrow H^\{n\}\_\{\mathfrak \{a\}\}(D(H^\{n-1\}\_\mathfrak \{(\}M))) \longrightarrow \ldots , \end\{eqnarray*\}
where $n:=\{\rm cd\}(\mathfrak \{a\},M)$ is a non-negative integer, $x_1, \ldots ,x_\{n-1\}$ is a regular sequence in $\mathfrak \{a\}$ on $M$ and, for an $R$-module $L$, $H^i_\{\mathfrak \{a\}\}(L)$ is the $i$th local cohomology module of $L$ with respect to $\mathfrak \{a\}$.},
author = {Naal, Batoul, Khashyarmanesh, Kazem},
journal = {Czechoslovak Mathematical Journal},
keywords = {local cohomology module; Matlis dual functor; filter regular sequence},
language = {eng},
number = {1},
pages = {1-7},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Matlis dual of local cohomology modules},
url = {http://eudml.org/doc/297342},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Naal, Batoul
AU - Khashyarmanesh, Kazem
TI - Matlis dual of local cohomology modules
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 1
SP - 1
EP - 7
AB - Let $(R,\mathfrak {m})$ be a commutative Noetherian local ring, $\mathfrak {a}$ be an ideal of $R$ and $M$ a finitely generated $R$-module such that $\mathfrak {a} M\ne M$ and ${\rm cd}(\mathfrak {a},M) - {\rm grade}(\mathfrak {a},M)\le 1$, where ${\rm cd}(\mathfrak {a},M)$ is the cohomological dimension of $M$ with respect to $\mathfrak {a}$ and ${\rm grade}(\mathfrak {a},M)$ is the $M$-grade of $\mathfrak {a}$. Let $D(-) := {\rm Hom}_R(-,E)$ be the Matlis dual functor, where $E := E(R/\mathfrak {m})$ is the injective hull of the residue field $R/\mathfrak {m}$. We show that there exists the following long exact sequence \begin{eqnarray*} 0 \longrightarrow & H^{n-2}_{\mathfrak {a}}(D(H^{n-1}_{\mathfrak {a}}(M))) \longrightarrow H^{n}_{\mathfrak {a}}(D(H^{n}_{\mathfrak {a}}(M))) \longrightarrow D(M) \\ \longrightarrow & H^{n-1}_{\mathfrak {a}}(D(H^{n-1}_{\mathfrak {a}}(M))) \longrightarrow H^{n+1}_{\mathfrak {a}}(D(H^{n}_{\mathfrak {a}}(M))) \\ \longrightarrow & H^{n}_{\mathfrak {a}}(D(H^{n-1}_{(x_1, \ldots ,x_{n-1})}(M))) \longrightarrow H^{n}_{\mathfrak {a}}(D(H^{n-1}_\mathfrak {(}M))) \longrightarrow \ldots , \end{eqnarray*}
where $n:={\rm cd}(\mathfrak {a},M)$ is a non-negative integer, $x_1, \ldots ,x_{n-1}$ is a regular sequence in $\mathfrak {a}$ on $M$ and, for an $R$-module $L$, $H^i_{\mathfrak {a}}(L)$ is the $i$th local cohomology module of $L$ with respect to $\mathfrak {a}$.
LA - eng
KW - local cohomology module; Matlis dual functor; filter regular sequence
UR - http://eudml.org/doc/297342
ER -
References
top- Brodmann, M. P., Sharp, R. Y., 10.1017/CBO9781139044059, Cambridge Studies in Advanced Mathematics 136, Cambridge University Press, Cambridge (2013). (2013) Zbl1263.13014MR3014449DOI10.1017/CBO9781139044059
- Hellus, M., 10.1080/00927870500261314, Commun. Algebra 33 (2005), 3997-4009. (2005) Zbl1101.13026MR2183976DOI10.1080/00927870500261314
- Hellus, M., Local Cohomology and Matlis Duality, Habilitationsschrift, Leipzing Available at https://www.uni-regensburg.de/mathematik/mathematik-hellus/ medien/habilitationsschriftohnedeckblatt.pdf (2006). (2006)
- Hellus, M., 10.1080/00927870701512069, Commun. Algebra 35 (2007), 3590-3602. (2007) Zbl1129.13018MR2362672DOI10.1080/00927870701512069
- Hellus, M., Schenzel, P., 10.1016/j.jalgebra.2013.12.006, J. Algebra 401 (2014), 48-61. (2014) Zbl1304.13033MR3151247DOI10.1016/j.jalgebra.2013.12.006
- Khashyarmanesh, K., 10.1090/s0002-9939-06-08664-3, Proc. Am. Math. Soc. 135 (2007), 1319-1327. (2007) Zbl1111.13016MR2276640DOI10.1090/s0002-9939-06-08664-3
- Khashyarmanesh, K., 10.1007/s00013-006-1115-1, Arch. Math. 88 (2007), 413-418. (2007) Zbl1112.13020MR2316886DOI10.1007/s00013-006-1115-1
- Khashyarmanesh, K., Salarian, S., 10.1080/00927879808826293, Commun. Algebra 26 (1998), 2483-2490. (1998) Zbl0909.13007MR1627876DOI10.1080/00927879808826293
- Khashyarmanesh, K., Salarian, S., 10.1080/00927879908826816, Commun. Algebra 27 (1999), 6191-6198. (1999) Zbl0940.13013MR1726302DOI10.1080/00927879908826816
- Schenzel, P., 10.1007/s00013-010-0149-6, Arch. Math. 95 (2010), 115-123. (2010) Zbl1200.13028MR2674247DOI10.1007/s00013-010-0149-6
- Schenzel, P., Trung, N. V., Cuong, N. T., 10.1002/mana.19780850106, Math. Nachr. 85 (1978), 57-73 German. (1978) Zbl0398.13014MR0517641DOI10.1002/mana.19780850106
- Stückrad, J., Vogel, W., Buchsbaum Rings and Applications. An Interaction Between Algebra, Geometry and Topology, Springer, Berlin (1986). (1986) Zbl0606.13018MR0881220
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.