Matlis dual of local cohomology modules

Batoul Naal; Kazem Khashyarmanesh

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 1, page 1-7
  • ISSN: 0011-4642

Abstract

top
Let ( R , 𝔪 ) be a commutative Noetherian local ring, 𝔞 be an ideal of R and M a finitely generated R -module such that 𝔞 M M and cd ( 𝔞 , M ) - grade ( 𝔞 , M ) 1 , where cd ( 𝔞 , M ) is the cohomological dimension of M with respect to 𝔞 and grade ( 𝔞 , M ) is the M -grade of 𝔞 . Let D ( - ) : = Hom R ( - , E ) be the Matlis dual functor, where E : = E ( R / 𝔪 ) is the injective hull of the residue field R / 𝔪 . We show that there exists the following long exact sequence 0 H 𝔞 n - 2 ( D ( H 𝔞 n - 1 ( M ) ) ) H 𝔞 n ( D ( H 𝔞 n ( M ) ) ) D ( M ) H 𝔞 n - 1 ( D ( H 𝔞 n - 1 ( M ) ) ) H 𝔞 n + 1 ( D ( H 𝔞 n ( M ) ) ) H 𝔞 n ( D ( H ( x 1 , ... , x n - 1 ) n - 1 ( M ) ) ) H 𝔞 n ( D ( H ( n - 1 M ) ) ) ... , where n : = cd ( 𝔞 , M ) is a non-negative integer, x 1 , ... , x n - 1 is a regular sequence in 𝔞 on M and, for an R -module L , H 𝔞 i ( L ) is the i th local cohomology module of L with respect to 𝔞 .

How to cite

top

Naal, Batoul, and Khashyarmanesh, Kazem. "Matlis dual of local cohomology modules." Czechoslovak Mathematical Journal 70.1 (2020): 1-7. <http://eudml.org/doc/297342>.

@article{Naal2020,
abstract = {Let $(R,\mathfrak \{m\})$ be a commutative Noetherian local ring, $\mathfrak \{a\}$ be an ideal of $R$ and $M$ a finitely generated $R$-module such that $\mathfrak \{a\} M\ne M$ and $\{\rm cd\}(\mathfrak \{a\},M) - \{\rm grade\}(\mathfrak \{a\},M)\le 1$, where $\{\rm cd\}(\mathfrak \{a\},M)$ is the cohomological dimension of $M$ with respect to $\mathfrak \{a\}$ and $\{\rm grade\}(\mathfrak \{a\},M)$ is the $M$-grade of $\mathfrak \{a\}$. Let $D(-) := \{\rm Hom\}_R(-,E)$ be the Matlis dual functor, where $E := E(R/\mathfrak \{m\})$ is the injective hull of the residue field $R/\mathfrak \{m\}$. We show that there exists the following long exact sequence \begin\{eqnarray*\} 0 \longrightarrow & H^\{n-2\}\_\{\mathfrak \{a\}\}(D(H^\{n-1\}\_\{\mathfrak \{a\}\}(M))) \longrightarrow H^\{n\}\_\{\mathfrak \{a\}\}(D(H^\{n\}\_\{\mathfrak \{a\}\}(M))) \longrightarrow D(M) \\ \longrightarrow & H^\{n-1\}\_\{\mathfrak \{a\}\}(D(H^\{n-1\}\_\{\mathfrak \{a\}\}(M))) \longrightarrow H^\{n+1\}\_\{\mathfrak \{a\}\}(D(H^\{n\}\_\{\mathfrak \{a\}\}(M))) \\ \longrightarrow & H^\{n\}\_\{\mathfrak \{a\}\}(D(H^\{n-1\}\_\{(x\_1, \ldots ,x\_\{n-1\})\}(M))) \longrightarrow H^\{n\}\_\{\mathfrak \{a\}\}(D(H^\{n-1\}\_\mathfrak \{(\}M))) \longrightarrow \ldots , \end\{eqnarray*\} where $n:=\{\rm cd\}(\mathfrak \{a\},M)$ is a non-negative integer, $x_1, \ldots ,x_\{n-1\}$ is a regular sequence in $\mathfrak \{a\}$ on $M$ and, for an $R$-module $L$, $H^i_\{\mathfrak \{a\}\}(L)$ is the $i$th local cohomology module of $L$ with respect to $\mathfrak \{a\}$.},
author = {Naal, Batoul, Khashyarmanesh, Kazem},
journal = {Czechoslovak Mathematical Journal},
keywords = {local cohomology module; Matlis dual functor; filter regular sequence},
language = {eng},
number = {1},
pages = {1-7},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Matlis dual of local cohomology modules},
url = {http://eudml.org/doc/297342},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Naal, Batoul
AU - Khashyarmanesh, Kazem
TI - Matlis dual of local cohomology modules
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 1
SP - 1
EP - 7
AB - Let $(R,\mathfrak {m})$ be a commutative Noetherian local ring, $\mathfrak {a}$ be an ideal of $R$ and $M$ a finitely generated $R$-module such that $\mathfrak {a} M\ne M$ and ${\rm cd}(\mathfrak {a},M) - {\rm grade}(\mathfrak {a},M)\le 1$, where ${\rm cd}(\mathfrak {a},M)$ is the cohomological dimension of $M$ with respect to $\mathfrak {a}$ and ${\rm grade}(\mathfrak {a},M)$ is the $M$-grade of $\mathfrak {a}$. Let $D(-) := {\rm Hom}_R(-,E)$ be the Matlis dual functor, where $E := E(R/\mathfrak {m})$ is the injective hull of the residue field $R/\mathfrak {m}$. We show that there exists the following long exact sequence \begin{eqnarray*} 0 \longrightarrow & H^{n-2}_{\mathfrak {a}}(D(H^{n-1}_{\mathfrak {a}}(M))) \longrightarrow H^{n}_{\mathfrak {a}}(D(H^{n}_{\mathfrak {a}}(M))) \longrightarrow D(M) \\ \longrightarrow & H^{n-1}_{\mathfrak {a}}(D(H^{n-1}_{\mathfrak {a}}(M))) \longrightarrow H^{n+1}_{\mathfrak {a}}(D(H^{n}_{\mathfrak {a}}(M))) \\ \longrightarrow & H^{n}_{\mathfrak {a}}(D(H^{n-1}_{(x_1, \ldots ,x_{n-1})}(M))) \longrightarrow H^{n}_{\mathfrak {a}}(D(H^{n-1}_\mathfrak {(}M))) \longrightarrow \ldots , \end{eqnarray*} where $n:={\rm cd}(\mathfrak {a},M)$ is a non-negative integer, $x_1, \ldots ,x_{n-1}$ is a regular sequence in $\mathfrak {a}$ on $M$ and, for an $R$-module $L$, $H^i_{\mathfrak {a}}(L)$ is the $i$th local cohomology module of $L$ with respect to $\mathfrak {a}$.
LA - eng
KW - local cohomology module; Matlis dual functor; filter regular sequence
UR - http://eudml.org/doc/297342
ER -

References

top
  1. Brodmann, M. P., Sharp, R. Y., 10.1017/CBO9781139044059, Cambridge Studies in Advanced Mathematics 136, Cambridge University Press, Cambridge (2013). (2013) Zbl1263.13014MR3014449DOI10.1017/CBO9781139044059
  2. Hellus, M., 10.1080/00927870500261314, Commun. Algebra 33 (2005), 3997-4009. (2005) Zbl1101.13026MR2183976DOI10.1080/00927870500261314
  3. Hellus, M., Local Cohomology and Matlis Duality, Habilitationsschrift, Leipzing Available at https://www.uni-regensburg.de/mathematik/mathematik-hellus/ medien/habilitationsschriftohnedeckblatt.pdf (2006). (2006) 
  4. Hellus, M., 10.1080/00927870701512069, Commun. Algebra 35 (2007), 3590-3602. (2007) Zbl1129.13018MR2362672DOI10.1080/00927870701512069
  5. Hellus, M., Schenzel, P., 10.1016/j.jalgebra.2013.12.006, J. Algebra 401 (2014), 48-61. (2014) Zbl1304.13033MR3151247DOI10.1016/j.jalgebra.2013.12.006
  6. Khashyarmanesh, K., 10.1090/s0002-9939-06-08664-3, Proc. Am. Math. Soc. 135 (2007), 1319-1327. (2007) Zbl1111.13016MR2276640DOI10.1090/s0002-9939-06-08664-3
  7. Khashyarmanesh, K., 10.1007/s00013-006-1115-1, Arch. Math. 88 (2007), 413-418. (2007) Zbl1112.13020MR2316886DOI10.1007/s00013-006-1115-1
  8. Khashyarmanesh, K., Salarian, S., 10.1080/00927879808826293, Commun. Algebra 26 (1998), 2483-2490. (1998) Zbl0909.13007MR1627876DOI10.1080/00927879808826293
  9. Khashyarmanesh, K., Salarian, S., 10.1080/00927879908826816, Commun. Algebra 27 (1999), 6191-6198. (1999) Zbl0940.13013MR1726302DOI10.1080/00927879908826816
  10. Schenzel, P., 10.1007/s00013-010-0149-6, Arch. Math. 95 (2010), 115-123. (2010) Zbl1200.13028MR2674247DOI10.1007/s00013-010-0149-6
  11. Schenzel, P., Trung, N. V., Cuong, N. T., 10.1002/mana.19780850106, Math. Nachr. 85 (1978), 57-73 German. (1978) Zbl0398.13014MR0517641DOI10.1002/mana.19780850106
  12. Stückrad, J., Vogel, W., Buchsbaum Rings and Applications. An Interaction Between Algebra, Geometry and Topology, Springer, Berlin (1986). (1986) Zbl0606.13018MR0881220

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.