Boundary value problem for an infinite system of second order differential equations in spaces
Ishfaq Ahmad Malik; Tanweer Jalal
Mathematica Bohemica (2020)
- Volume: 145, Issue: 2, page 191-204
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMalik, Ishfaq Ahmad, and Jalal, Tanweer. "Boundary value problem for an infinite system of second order differential equations in $\ell _{p}$ spaces." Mathematica Bohemica 145.2 (2020): 191-204. <http://eudml.org/doc/297358>.
@article{Malik2020,
abstract = {The concept of measures of noncompactness is applied to prove the existence of a solution for a boundary value problem for an infinite system of second order differential equations in $\ell _\{p\}$ space. We change the boundary value problem into an equivalent system of infinite integral equations and result is obtained by using Darbo’s type fixed point theorem. The result is illustrated with help of an example.},
author = {Malik, Ishfaq Ahmad, Jalal, Tanweer},
journal = {Mathematica Bohemica},
keywords = {Darbo's fixed point theorem; equicontinuous sets; infinite system of second order differential equations; infinite system of integral equations; measures of noncompactness},
language = {eng},
number = {2},
pages = {191-204},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundary value problem for an infinite system of second order differential equations in $\ell _\{p\}$ spaces},
url = {http://eudml.org/doc/297358},
volume = {145},
year = {2020},
}
TY - JOUR
AU - Malik, Ishfaq Ahmad
AU - Jalal, Tanweer
TI - Boundary value problem for an infinite system of second order differential equations in $\ell _{p}$ spaces
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 2
SP - 191
EP - 204
AB - The concept of measures of noncompactness is applied to prove the existence of a solution for a boundary value problem for an infinite system of second order differential equations in $\ell _{p}$ space. We change the boundary value problem into an equivalent system of infinite integral equations and result is obtained by using Darbo’s type fixed point theorem. The result is illustrated with help of an example.
LA - eng
KW - Darbo's fixed point theorem; equicontinuous sets; infinite system of second order differential equations; infinite system of integral equations; measures of noncompactness
UR - http://eudml.org/doc/297358
ER -
References
top- Agarwal, R. P., Benchohra, M., Hamani, S., 10.1007/s10440-008-9356-6, Acta Appl. Math. 109 (2010), 973-1033. (2010) Zbl1198.26004MR2596185DOI10.1007/s10440-008-9356-6
- Aghajani, A., Pourhadi, E., 10.36045/bbms/1426856862, Bull. Belg. Math. Soc.-Simon Stevin 22 (2015), 105-118. (2015) Zbl1329.47082MR3325725DOI10.36045/bbms/1426856862
- Banaś, J., Goebel, K., Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics 60. Marcel Dekker, New York (1980). (1980) Zbl0441.47056MR0591679
- Banaś, J., Lecko, M., 10.1016/S0377-0427(00)00708-1, J. Comput. Appl. Math. 137 (2001), 363-375. (2001) Zbl0997.34048MR1865237DOI10.1016/S0377-0427(00)00708-1
- Banaś, J., Mursaleen, M., 10.1007/978-81-322-1886-9, Springer, New Delhi (2014). (2014) Zbl1323.47001MR3289625DOI10.1007/978-81-322-1886-9
- Banaś, J., Mursaleen, M., Rizvi, S. M. H., Existence of solutions to a boundary-value problem for an infinite system of differential equations, Electron. J. Differ. Equ. 2017 (2017), Paper No. 262, 12 pages. (2017) Zbl1372.34096MR3723535
- Darbo, G., Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92 Italian. (1955) Zbl0064.35704MR0070164
- Deimling, K., 10.1007/BFb0091636, Lecture Notes in Mathematics 596. Springer, Berlin (1977). (1977) Zbl0361.34050MR0463601DOI10.1007/BFb0091636
- Deimling, K., 10.1007/978-3-662-00547-7, Dover Books on Mathematics. Dover Publications, Mineola (2010). (2010) Zbl1257.47059MR0787404DOI10.1007/978-3-662-00547-7
- Duffy, D. G., 10.1201/b18159, Studies in Advanced Mathematics CRC Press, Boca Raton (2015). (2015) Zbl1343.35002MR1888091DOI10.1201/b18159
- Klamka, J., Schauder's fixed-point theorem in nonlinear controllability problems, Control Cybern. 29 (2000), 153-165. (2000) Zbl1011.93001MR1775163
- Kuratowski, C., 10.4064/fm-15-1-301-309, Fundamenta 15 (1930), 301-309 French. (1930) Zbl56.1124.04DOI10.4064/fm-15-1-301-309
- Liu, Z., Kang, S. M., 10.1016/S0893-9659(01)00071-4, Appl. Math. Lett. 14 (2001), 955-962. (2001) Zbl0990.39019MR1855937DOI10.1016/S0893-9659(01)00071-4
- Malkowsky, E., Rakočević, V., An introduction into the theory of sequence spaces and measures of noncompactness, Four Topics in Mathematics Zbornik Radova . Matematički Institut SANU, Beograd (2000), 143-234 B. Stanković. (2000) Zbl0996.46006MR1780493
- Mohiuddine, S. A., Srivastava, H. M., Alotaibi, A., 10.1186/s13662-016-1016-y, Adv. Difference Equ. 2016 (2016), Paper No. 317, 13 pages. (2016) Zbl06988399MR3579739DOI10.1186/s13662-016-1016-y
- Mursaleen, M., 10.4153/CMB-2011-170-7, Can. Math. Bull. 56 (2013), 388-394. (2013) Zbl1275.47133MR3043065DOI10.4153/CMB-2011-170-7
- Mursaleen, M., Mohiuddine, S. A., 10.1016/j.na.2011.10.011, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 2111-2115. (2012) Zbl1256.47060MR2870903DOI10.1016/j.na.2011.10.011
- Mursaleen, M., Rizvi, S. M. H., 10.1090/proc/13048, Proc. Am. Math. Soc. 144 (2016), 4279-4289. (2016) Zbl1385.47021MR3531179DOI10.1090/proc/13048
- Mursaleen, M., Rizvi, S. M. H., Samet, B., 10.1080/00036811.2017.1343464, Appl. Anal. 97 (2018), 1829-1845. (2018) Zbl1396.93063MR3832170DOI10.1080/00036811.2017.1343464
- Srivastava, H. M., Das, A., Hazarika, B., Mohiuddine, S. A., 10.1002/mma.4845, Math. Methods Appl. Sci. 41 (2018), 3558-3569. (2018) Zbl06923678MR3820168DOI10.1002/mma.4845
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.