Boundary value problem for an infinite system of second order differential equations in p spaces

Ishfaq Ahmad Malik; Tanweer Jalal

Mathematica Bohemica (2020)

  • Volume: 145, Issue: 2, page 191-204
  • ISSN: 0862-7959

Abstract

top
The concept of measures of noncompactness is applied to prove the existence of a solution for a boundary value problem for an infinite system of second order differential equations in p space. We change the boundary value problem into an equivalent system of infinite integral equations and result is obtained by using Darbo’s type fixed point theorem. The result is illustrated with help of an example.

How to cite

top

Malik, Ishfaq Ahmad, and Jalal, Tanweer. "Boundary value problem for an infinite system of second order differential equations in $\ell _{p}$ spaces." Mathematica Bohemica 145.2 (2020): 191-204. <http://eudml.org/doc/297358>.

@article{Malik2020,
abstract = {The concept of measures of noncompactness is applied to prove the existence of a solution for a boundary value problem for an infinite system of second order differential equations in $\ell _\{p\}$ space. We change the boundary value problem into an equivalent system of infinite integral equations and result is obtained by using Darbo’s type fixed point theorem. The result is illustrated with help of an example.},
author = {Malik, Ishfaq Ahmad, Jalal, Tanweer},
journal = {Mathematica Bohemica},
keywords = {Darbo's fixed point theorem; equicontinuous sets; infinite system of second order differential equations; infinite system of integral equations; measures of noncompactness},
language = {eng},
number = {2},
pages = {191-204},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundary value problem for an infinite system of second order differential equations in $\ell _\{p\}$ spaces},
url = {http://eudml.org/doc/297358},
volume = {145},
year = {2020},
}

TY - JOUR
AU - Malik, Ishfaq Ahmad
AU - Jalal, Tanweer
TI - Boundary value problem for an infinite system of second order differential equations in $\ell _{p}$ spaces
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 2
SP - 191
EP - 204
AB - The concept of measures of noncompactness is applied to prove the existence of a solution for a boundary value problem for an infinite system of second order differential equations in $\ell _{p}$ space. We change the boundary value problem into an equivalent system of infinite integral equations and result is obtained by using Darbo’s type fixed point theorem. The result is illustrated with help of an example.
LA - eng
KW - Darbo's fixed point theorem; equicontinuous sets; infinite system of second order differential equations; infinite system of integral equations; measures of noncompactness
UR - http://eudml.org/doc/297358
ER -

References

top
  1. Agarwal, R. P., Benchohra, M., Hamani, S., 10.1007/s10440-008-9356-6, Acta Appl. Math. 109 (2010), 973-1033. (2010) Zbl1198.26004MR2596185DOI10.1007/s10440-008-9356-6
  2. Aghajani, A., Pourhadi, E., 10.36045/bbms/1426856862, Bull. Belg. Math. Soc.-Simon Stevin 22 (2015), 105-118. (2015) Zbl1329.47082MR3325725DOI10.36045/bbms/1426856862
  3. Banaś, J., Goebel, K., Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics 60. Marcel Dekker, New York (1980). (1980) Zbl0441.47056MR0591679
  4. Banaś, J., Lecko, M., 10.1016/S0377-0427(00)00708-1, J. Comput. Appl. Math. 137 (2001), 363-375. (2001) Zbl0997.34048MR1865237DOI10.1016/S0377-0427(00)00708-1
  5. Banaś, J., Mursaleen, M., 10.1007/978-81-322-1886-9, Springer, New Delhi (2014). (2014) Zbl1323.47001MR3289625DOI10.1007/978-81-322-1886-9
  6. Banaś, J., Mursaleen, M., Rizvi, S. M. H., Existence of solutions to a boundary-value problem for an infinite system of differential equations, Electron. J. Differ. Equ. 2017 (2017), Paper No. 262, 12 pages. (2017) Zbl1372.34096MR3723535
  7. Darbo, G., Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92 Italian. (1955) Zbl0064.35704MR0070164
  8. Deimling, K., 10.1007/BFb0091636, Lecture Notes in Mathematics 596. Springer, Berlin (1977). (1977) Zbl0361.34050MR0463601DOI10.1007/BFb0091636
  9. Deimling, K., 10.1007/978-3-662-00547-7, Dover Books on Mathematics. Dover Publications, Mineola (2010). (2010) Zbl1257.47059MR0787404DOI10.1007/978-3-662-00547-7
  10. Duffy, D. G., 10.1201/b18159, Studies in Advanced Mathematics CRC Press, Boca Raton (2015). (2015) Zbl1343.35002MR1888091DOI10.1201/b18159
  11. Klamka, J., Schauder's fixed-point theorem in nonlinear controllability problems, Control Cybern. 29 (2000), 153-165. (2000) Zbl1011.93001MR1775163
  12. Kuratowski, C., 10.4064/fm-15-1-301-309, Fundamenta 15 (1930), 301-309 French. (1930) Zbl56.1124.04DOI10.4064/fm-15-1-301-309
  13. Liu, Z., Kang, S. M., 10.1016/S0893-9659(01)00071-4, Appl. Math. Lett. 14 (2001), 955-962. (2001) Zbl0990.39019MR1855937DOI10.1016/S0893-9659(01)00071-4
  14. Malkowsky, E., Rakočević, V., An introduction into the theory of sequence spaces and measures of noncompactness, Four Topics in Mathematics Zbornik Radova . Matematički Institut SANU, Beograd (2000), 143-234 B. Stanković. (2000) Zbl0996.46006MR1780493
  15. Mohiuddine, S. A., Srivastava, H. M., Alotaibi, A., 10.1186/s13662-016-1016-y, Adv. Difference Equ. 2016 (2016), Paper No. 317, 13 pages. (2016) Zbl06988399MR3579739DOI10.1186/s13662-016-1016-y
  16. Mursaleen, M., 10.4153/CMB-2011-170-7, Can. Math. Bull. 56 (2013), 388-394. (2013) Zbl1275.47133MR3043065DOI10.4153/CMB-2011-170-7
  17. Mursaleen, M., Mohiuddine, S. A., 10.1016/j.na.2011.10.011, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 2111-2115. (2012) Zbl1256.47060MR2870903DOI10.1016/j.na.2011.10.011
  18. Mursaleen, M., Rizvi, S. M. H., 10.1090/proc/13048, Proc. Am. Math. Soc. 144 (2016), 4279-4289. (2016) Zbl1385.47021MR3531179DOI10.1090/proc/13048
  19. Mursaleen, M., Rizvi, S. M. H., Samet, B., 10.1080/00036811.2017.1343464, Appl. Anal. 97 (2018), 1829-1845. (2018) Zbl1396.93063MR3832170DOI10.1080/00036811.2017.1343464
  20. Srivastava, H. M., Das, A., Hazarika, B., Mohiuddine, S. A., 10.1002/mma.4845, Math. Methods Appl. Sci. 41 (2018), 3558-3569. (2018) Zbl06923678MR3820168DOI10.1002/mma.4845

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.