Finiteness of meromorphic functions on an annulus sharing four values regardless of multiplicity

Duc Quang Si; An Hai Tran

Mathematica Bohemica (2020)

  • Volume: 145, Issue: 2, page 163-176
  • ISSN: 0862-7959

Abstract

top
This paper deals with the finiteness problem of meromorphic funtions on an annulus sharing four values regardless of multiplicity. We prove that if three admissible meromorphic functions f 1 , f 2 , f 3 on an annulus 𝔸 ( R 0 ) share four distinct values regardless of multiplicity and have the complete identity set of positive counting function, then f 1 = f 2 or f 2 = f 3 or f 3 = f 1 . This result deduces that there are at most two admissible meromorphic functions on an annulus sharing a value with multiplicity truncated to level 2 and sharing other three values regardless of multiplicity. This result also implies that there are at most three admissible meromorphic functions on an annulus sharing four values regardless of multiplicities. These results are a generalization and improvement of the previous results on finiteness problem of meromorphic functions on sharing four values.

How to cite

top

Si, Duc Quang, and Tran, An Hai. "Finiteness of meromorphic functions on an annulus sharing four values regardless of multiplicity." Mathematica Bohemica 145.2 (2020): 163-176. <http://eudml.org/doc/297365>.

@article{Si2020,
abstract = {This paper deals with the finiteness problem of meromorphic funtions on an annulus sharing four values regardless of multiplicity. We prove that if three admissible meromorphic functions $f_1$, $f_2$, $f_3$ on an annulus $\mathbb \{A\}(\{R_0\})$ share four distinct values regardless of multiplicity and have the complete identity set of positive counting function, then $f_1=f_2$ or $f_2=f_3$ or $f_3=f_1$. This result deduces that there are at most two admissible meromorphic functions on an annulus sharing a value with multiplicity truncated to level $2$ and sharing other three values regardless of multiplicity. This result also implies that there are at most three admissible meromorphic functions on an annulus sharing four values regardless of multiplicities. These results are a generalization and improvement of the previous results on finiteness problem of meromorphic functions on $\mathbb \{C\}$ sharing four values.},
author = {Si, Duc Quang, Tran, An Hai},
journal = {Mathematica Bohemica},
keywords = {meromorphic function; Nevanlinna theory; annulus},
language = {eng},
number = {2},
pages = {163-176},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Finiteness of meromorphic functions on an annulus sharing four values regardless of multiplicity},
url = {http://eudml.org/doc/297365},
volume = {145},
year = {2020},
}

TY - JOUR
AU - Si, Duc Quang
AU - Tran, An Hai
TI - Finiteness of meromorphic functions on an annulus sharing four values regardless of multiplicity
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 2
SP - 163
EP - 176
AB - This paper deals with the finiteness problem of meromorphic funtions on an annulus sharing four values regardless of multiplicity. We prove that if three admissible meromorphic functions $f_1$, $f_2$, $f_3$ on an annulus $\mathbb {A}({R_0})$ share four distinct values regardless of multiplicity and have the complete identity set of positive counting function, then $f_1=f_2$ or $f_2=f_3$ or $f_3=f_1$. This result deduces that there are at most two admissible meromorphic functions on an annulus sharing a value with multiplicity truncated to level $2$ and sharing other three values regardless of multiplicity. This result also implies that there are at most three admissible meromorphic functions on an annulus sharing four values regardless of multiplicities. These results are a generalization and improvement of the previous results on finiteness problem of meromorphic functions on $\mathbb {C}$ sharing four values.
LA - eng
KW - meromorphic function; Nevanlinna theory; annulus
UR - http://eudml.org/doc/297365
ER -

References

top
  1. Banerjee, A., 10.1016/j.camwa.2006.10.026, Comput. Math. Appl. 53 (2007), 1750-1761. (2007) Zbl1152.30321MR2332104DOI10.1016/j.camwa.2006.10.026
  2. Bhoosnurmath, S. S., Dyavanal, R. S., 10.1016/j.camwa.2006.08.045, Comput. Math. Appl. 53 (2007), 1191-1205. (2007) Zbl1170.30011MR2327673DOI10.1016/j.camwa.2006.08.045
  3. Cao, T.-B., Deng, Z.-S., 10.1007/s12044-012-0074-7, Proc. Indian Acad. Sci., Math. Sci. 122 (2012), 203-220. (2012) Zbl1269.30036MR2945092DOI10.1007/s12044-012-0074-7
  4. Cao, T.-B., Yi, H.-X., Xu, H.-Y., 10.1016/j.camwa.2009.07.042, Comput. Math. Appl. 58 (2009), 1457-1465. (2009) Zbl1189.30065MR2555283DOI10.1016/j.camwa.2009.07.042
  5. Fujimoto, H., 10.1017/S0027763000006826, Nagoya Math. J. 152 (1998), 131-152. (1998) Zbl0937.32010MR1659377DOI10.1017/S0027763000006826
  6. Gundersen, G. G., 10.2307/1999223, Trans. Am. Math. Soc. 277 (1983), 545-567. (1983) Zbl0508.30029MR0694375DOI10.2307/1999223
  7. Ishizaki, K., Toda, N., 10.2996/kmj/1138043945, Kodai Math. J. 21 (1998), 350-371. (1998) Zbl0946.30019MR1664754DOI10.2996/kmj/1138043945
  8. Khrystiyanyn, A. Y., Kondratyuk, A. A., On the Nevanlinna theory for meromorphic functions on annuli. I, Mat. Stud. 23 (2005), 19-30. (2005) Zbl1066.30036MR2150985
  9. Khrystiyanyn, A. Y., Kondratyuk, A. A., On the Nevanlinna theory for meromorphic functions on annuli. II, Mat. Stud. 24 (2005), 57-68. (2005) Zbl1092.30048MR2210430
  10. Li, X., Yi, H., Hu, H., 10.1016/S0252-9602(12)60126-X, Acta Math. Sci., Ser. B, Engl. Ed. 32 (2012), 1593-1606. (2012) Zbl1274.30120MR2927447DOI10.1016/S0252-9602(12)60126-X
  11. Lund, M., Ye, Z., 10.1007/s11425-010-0037-3, Sci. China, Math. 53 (2010), 547-554. (2010) Zbl1193.30044MR2608311DOI10.1007/s11425-010-0037-3
  12. Nevanlinna, R., 10.1007/BF02565342, Acta Math. 48 German (1926), 367-391. (1926) Zbl52.0323.03MR1555233DOI10.1007/BF02565342
  13. Quang, S. D., 10.1142/S0129167X12500887, Int. J. Math. 23 (2012), Article ID 1250088, 18 pages. (2012) Zbl1284.30020MR2959434DOI10.1142/S0129167X12500887
  14. Quang, S. D., 10.1142/S0129167X1450102X, Int. J. Math. 25 (2014), Article ID 1450102, 20 pages. (2014) Zbl1304.30044MR3285302DOI10.1142/S0129167X1450102X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.