A blow-up criterion for the strong solutions to the nonhomogeneous Navier-Stokes-Korteweg equations in dimension three
Applications of Mathematics (2021)
- Volume: 66, Issue: 1, page 43-55
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLi, Huanyuan. "A blow-up criterion for the strong solutions to the nonhomogeneous Navier-Stokes-Korteweg equations in dimension three." Applications of Mathematics 66.1 (2021): 43-55. <http://eudml.org/doc/297374>.
@article{Li2021,
abstract = {This paper proves a Serrin’s type blow-up criterion for the 3D density-dependent Navier-Stokes-Korteweg equations with vacuum. It is shown that if the density $\rho $ and velocity field $u$ satisfy $\Vert \nabla \rho \Vert _\{L^\{\infty \}(0,T; W^\{1,q\})\} + \Vert u\Vert _\{L^s(0,T; L^r_\{\omega \})\}< \infty $ for some $q>3$ and any $(r,s)$ satisfying $2/s+3/r \le 1$, $3 <r \le \infty ,$ then the strong solutions to the density-dependent Navier-Stokes-Korteweg equations can exist globally over $[0,T]$. Here $L^r_\{\omega \}$ denotes the weak $L^r$ space.},
author = {Li, Huanyuan},
journal = {Applications of Mathematics},
keywords = {Navier-Stokes-Korteweg equations; capillary fluid; blow-up criterion; vacuum; strong solutions},
language = {eng},
number = {1},
pages = {43-55},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A blow-up criterion for the strong solutions to the nonhomogeneous Navier-Stokes-Korteweg equations in dimension three},
url = {http://eudml.org/doc/297374},
volume = {66},
year = {2021},
}
TY - JOUR
AU - Li, Huanyuan
TI - A blow-up criterion for the strong solutions to the nonhomogeneous Navier-Stokes-Korteweg equations in dimension three
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 43
EP - 55
AB - This paper proves a Serrin’s type blow-up criterion for the 3D density-dependent Navier-Stokes-Korteweg equations with vacuum. It is shown that if the density $\rho $ and velocity field $u$ satisfy $\Vert \nabla \rho \Vert _{L^{\infty }(0,T; W^{1,q})} + \Vert u\Vert _{L^s(0,T; L^r_{\omega })}< \infty $ for some $q>3$ and any $(r,s)$ satisfying $2/s+3/r \le 1$, $3 <r \le \infty ,$ then the strong solutions to the density-dependent Navier-Stokes-Korteweg equations can exist globally over $[0,T]$. Here $L^r_{\omega }$ denotes the weak $L^r$ space.
LA - eng
KW - Navier-Stokes-Korteweg equations; capillary fluid; blow-up criterion; vacuum; strong solutions
UR - http://eudml.org/doc/297374
ER -
References
top- Bosia, S., Pata, V., Robinson, J. C., 10.1007/s00021-014-0182-5, J. Math. Fluid Mech. 16 (2014), 721-725. (2014) Zbl1307.35186MR3267544DOI10.1007/s00021-014-0182-5
- Cho, Y., Kim, H., 10.1016/j.na.2004.07.020, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 59 (2004), 465-489. (2004) Zbl1066.35070MR2094425DOI10.1016/j.na.2004.07.020
- Grafakos, L., 10.1007/978-0-387-09432-8, Graduate Texts in Mathematics 249, Springer, New York (2008). (2008) Zbl1220.42001MR2445437DOI10.1007/978-0-387-09432-8
- Huang, X., Wang, Y., 10.1016/j.jde.2012.08.029, J. Differ. Equations 254 (2013), 511-527. (2013) Zbl1253.35121MR2990041DOI10.1016/j.jde.2012.08.029
- Huang, X., Wang, Y., 10.1137/120894865, SIAM J. Math. Anal. 46 (2014), 1771-1788. (2014) Zbl1302.35294MR3200422DOI10.1137/120894865
- Huang, X., Wang, Y., 10.1016/j.jde.2015.03.008, J. Differ. Equations 259 (2015), 1606-1627. (2015) Zbl1318.35064MR3345862DOI10.1016/j.jde.2015.03.008
- Kim, H., 10.1137/S0036141004442197, SIAM J. Math. Anal. 37 (2006), 1417-1434. (2006) Zbl1141.35432MR2215270DOI10.1137/S0036141004442197
- Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N., 10.1090/mmono/023, Translations of Mathematical Monographs 23, American Mathematical Society, Providence (1968). (1968) Zbl0174.15403MR0241822DOI10.1090/mmono/023
- Li, H., 10.1007/s10440-019-00255-3, Acta Appl. Math. 166 (2020), 73-83. (2020) Zbl07181473MR4077229DOI10.1007/s10440-019-00255-3
- Sohr, H., 10.1007/978-3-0348-0551-3, Birkhäuser Advanced Texts, Birkhäuser, Basel (2001). (2001) Zbl0983.35004MR3013225DOI10.1007/978-3-0348-0551-3
- Tan, Z., Wang, Y., 10.1016/S0252-9602(10)60079-3, Acta Math. Sci., Ser. B, Engl. Ed. 30 (2010), 799-809. (2010) Zbl1228.76038MR2675787DOI10.1016/S0252-9602(10)60079-3
- Wang, T., 10.1016/j.jmaa.2017.05.074, J. Math. Anal. Appl. 455 (2017), 606-618. (2017) Zbl1373.35257MR3665121DOI10.1016/j.jmaa.2017.05.074
- Xu, X., Zhang, J., 10.1142/S0218202511500102, Math. Models Methods Appl. Sci. 22 (2012), Article ID 1150010, 23 pages. (2012) Zbl1388.76452MR2887666DOI10.1142/S0218202511500102
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.