A blow-up criterion for the strong solutions to the nonhomogeneous Navier-Stokes-Korteweg equations in dimension three

Huanyuan Li

Applications of Mathematics (2021)

  • Volume: 66, Issue: 1, page 43-55
  • ISSN: 0862-7940

Abstract

top
This paper proves a Serrin’s type blow-up criterion for the 3D density-dependent Navier-Stokes-Korteweg equations with vacuum. It is shown that if the density ρ and velocity field u satisfy ρ L ( 0 , T ; W 1 , q ) + u L s ( 0 , T ; L ω r ) < for some q > 3 and any ( r , s ) satisfying 2 / s + 3 / r 1 , 3 < r , then the strong solutions to the density-dependent Navier-Stokes-Korteweg equations can exist globally over [ 0 , T ] . Here L ω r denotes the weak L r space.

How to cite

top

Li, Huanyuan. "A blow-up criterion for the strong solutions to the nonhomogeneous Navier-Stokes-Korteweg equations in dimension three." Applications of Mathematics 66.1 (2021): 43-55. <http://eudml.org/doc/297374>.

@article{Li2021,
abstract = {This paper proves a Serrin’s type blow-up criterion for the 3D density-dependent Navier-Stokes-Korteweg equations with vacuum. It is shown that if the density $\rho $ and velocity field $u$ satisfy $\Vert \nabla \rho \Vert _\{L^\{\infty \}(0,T; W^\{1,q\})\} + \Vert u\Vert _\{L^s(0,T; L^r_\{\omega \})\}< \infty $ for some $q>3$ and any $(r,s)$ satisfying $2/s+3/r \le 1$, $3 <r \le \infty ,$ then the strong solutions to the density-dependent Navier-Stokes-Korteweg equations can exist globally over $[0,T]$. Here $L^r_\{\omega \}$ denotes the weak $L^r$ space.},
author = {Li, Huanyuan},
journal = {Applications of Mathematics},
keywords = {Navier-Stokes-Korteweg equations; capillary fluid; blow-up criterion; vacuum; strong solutions},
language = {eng},
number = {1},
pages = {43-55},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A blow-up criterion for the strong solutions to the nonhomogeneous Navier-Stokes-Korteweg equations in dimension three},
url = {http://eudml.org/doc/297374},
volume = {66},
year = {2021},
}

TY - JOUR
AU - Li, Huanyuan
TI - A blow-up criterion for the strong solutions to the nonhomogeneous Navier-Stokes-Korteweg equations in dimension three
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 1
SP - 43
EP - 55
AB - This paper proves a Serrin’s type blow-up criterion for the 3D density-dependent Navier-Stokes-Korteweg equations with vacuum. It is shown that if the density $\rho $ and velocity field $u$ satisfy $\Vert \nabla \rho \Vert _{L^{\infty }(0,T; W^{1,q})} + \Vert u\Vert _{L^s(0,T; L^r_{\omega })}< \infty $ for some $q>3$ and any $(r,s)$ satisfying $2/s+3/r \le 1$, $3 <r \le \infty ,$ then the strong solutions to the density-dependent Navier-Stokes-Korteweg equations can exist globally over $[0,T]$. Here $L^r_{\omega }$ denotes the weak $L^r$ space.
LA - eng
KW - Navier-Stokes-Korteweg equations; capillary fluid; blow-up criterion; vacuum; strong solutions
UR - http://eudml.org/doc/297374
ER -

References

top
  1. Bosia, S., Pata, V., Robinson, J. C., 10.1007/s00021-014-0182-5, J. Math. Fluid Mech. 16 (2014), 721-725. (2014) Zbl1307.35186MR3267544DOI10.1007/s00021-014-0182-5
  2. Cho, Y., Kim, H., 10.1016/j.na.2004.07.020, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 59 (2004), 465-489. (2004) Zbl1066.35070MR2094425DOI10.1016/j.na.2004.07.020
  3. Grafakos, L., 10.1007/978-0-387-09432-8, Graduate Texts in Mathematics 249, Springer, New York (2008). (2008) Zbl1220.42001MR2445437DOI10.1007/978-0-387-09432-8
  4. Huang, X., Wang, Y., 10.1016/j.jde.2012.08.029, J. Differ. Equations 254 (2013), 511-527. (2013) Zbl1253.35121MR2990041DOI10.1016/j.jde.2012.08.029
  5. Huang, X., Wang, Y., 10.1137/120894865, SIAM J. Math. Anal. 46 (2014), 1771-1788. (2014) Zbl1302.35294MR3200422DOI10.1137/120894865
  6. Huang, X., Wang, Y., 10.1016/j.jde.2015.03.008, J. Differ. Equations 259 (2015), 1606-1627. (2015) Zbl1318.35064MR3345862DOI10.1016/j.jde.2015.03.008
  7. Kim, H., 10.1137/S0036141004442197, SIAM J. Math. Anal. 37 (2006), 1417-1434. (2006) Zbl1141.35432MR2215270DOI10.1137/S0036141004442197
  8. Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N., 10.1090/mmono/023, Translations of Mathematical Monographs 23, American Mathematical Society, Providence (1968). (1968) Zbl0174.15403MR0241822DOI10.1090/mmono/023
  9. Li, H., 10.1007/s10440-019-00255-3, Acta Appl. Math. 166 (2020), 73-83. (2020) Zbl07181473MR4077229DOI10.1007/s10440-019-00255-3
  10. Sohr, H., 10.1007/978-3-0348-0551-3, Birkhäuser Advanced Texts, Birkhäuser, Basel (2001). (2001) Zbl0983.35004MR3013225DOI10.1007/978-3-0348-0551-3
  11. Tan, Z., Wang, Y., 10.1016/S0252-9602(10)60079-3, Acta Math. Sci., Ser. B, Engl. Ed. 30 (2010), 799-809. (2010) Zbl1228.76038MR2675787DOI10.1016/S0252-9602(10)60079-3
  12. Wang, T., 10.1016/j.jmaa.2017.05.074, J. Math. Anal. Appl. 455 (2017), 606-618. (2017) Zbl1373.35257MR3665121DOI10.1016/j.jmaa.2017.05.074
  13. Xu, X., Zhang, J., 10.1142/S0218202511500102, Math. Models Methods Appl. Sci. 22 (2012), Article ID 1150010, 23 pages. (2012) Zbl1388.76452MR2887666DOI10.1142/S0218202511500102

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.