An XFEM/DG approach for fluid-structure interaction problems with contact

Luca Formaggia; Federico Gatti; Stefano Zonca

Applications of Mathematics (2021)

  • Volume: 66, Issue: 2, page 183-211
  • ISSN: 0862-7940

Abstract

top
In this work, we address the problem of fluid-structure interaction (FSI) with moving structures that may come into contact. We propose a penalization contact algorithm implemented in an unfitted numerical framework designed to treat large displacements. In the proposed method, the fluid mesh is fixed and the structure meshes are superimposed to it without any constraint on the conformity. Thanks to the Extended Finite Element Method (XFEM), we can treat discontinuities of the fluid solution on the mesh elements intersecting the structure. The coupling conditions at the fluid-structure interface are enforced via a discontinuous Galerkin mortaring technique, which is a penalization method that ensures the consistency of the scheme with the underlining problem. Concerning the contact problem, we consider a frictionless contact model in a master/slave approach. By considering the coupled FSI-contact problem, we perform some numerical tests to assess the sensitivity of the proposed method with respect to the discretization and contact parameters and we show some examples in the case of contact between a flexible body and a rigid wall and between two deformable structures.

How to cite

top

Formaggia, Luca, Gatti, Federico, and Zonca, Stefano. "An XFEM/DG approach for fluid-structure interaction problems with contact." Applications of Mathematics 66.2 (2021): 183-211. <http://eudml.org/doc/297389>.

@article{Formaggia2021,
abstract = {In this work, we address the problem of fluid-structure interaction (FSI) with moving structures that may come into contact. We propose a penalization contact algorithm implemented in an unfitted numerical framework designed to treat large displacements. In the proposed method, the fluid mesh is fixed and the structure meshes are superimposed to it without any constraint on the conformity. Thanks to the Extended Finite Element Method (XFEM), we can treat discontinuities of the fluid solution on the mesh elements intersecting the structure. The coupling conditions at the fluid-structure interface are enforced via a discontinuous Galerkin mortaring technique, which is a penalization method that ensures the consistency of the scheme with the underlining problem. Concerning the contact problem, we consider a frictionless contact model in a master/slave approach. By considering the coupled FSI-contact problem, we perform some numerical tests to assess the sensitivity of the proposed method with respect to the discretization and contact parameters and we show some examples in the case of contact between a flexible body and a rigid wall and between two deformable structures.},
author = {Formaggia, Luca, Gatti, Federico, Zonca, Stefano},
journal = {Applications of Mathematics},
keywords = {fluid-structure interaction; contact; extended finite element method; discontinuous Galerkin; Nitsche's method},
language = {eng},
number = {2},
pages = {183-211},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An XFEM/DG approach for fluid-structure interaction problems with contact},
url = {http://eudml.org/doc/297389},
volume = {66},
year = {2021},
}

TY - JOUR
AU - Formaggia, Luca
AU - Gatti, Federico
AU - Zonca, Stefano
TI - An XFEM/DG approach for fluid-structure interaction problems with contact
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 183
EP - 211
AB - In this work, we address the problem of fluid-structure interaction (FSI) with moving structures that may come into contact. We propose a penalization contact algorithm implemented in an unfitted numerical framework designed to treat large displacements. In the proposed method, the fluid mesh is fixed and the structure meshes are superimposed to it without any constraint on the conformity. Thanks to the Extended Finite Element Method (XFEM), we can treat discontinuities of the fluid solution on the mesh elements intersecting the structure. The coupling conditions at the fluid-structure interface are enforced via a discontinuous Galerkin mortaring technique, which is a penalization method that ensures the consistency of the scheme with the underlining problem. Concerning the contact problem, we consider a frictionless contact model in a master/slave approach. By considering the coupled FSI-contact problem, we perform some numerical tests to assess the sensitivity of the proposed method with respect to the discretization and contact parameters and we show some examples in the case of contact between a flexible body and a rigid wall and between two deformable structures.
LA - eng
KW - fluid-structure interaction; contact; extended finite element method; discontinuous Galerkin; Nitsche's method
UR - http://eudml.org/doc/297389
ER -

References

top
  1. Ager, C., Schott, B., Vuong, A.-T., Popp, A., Wall, W. A., 10.1002/nme.6094, Int. J. Numer. Methods Eng. 119 (2019), 1345-1378. (2019) MR4007823DOI10.1002/nme.6094
  2. Ager, C., Seitz, A., Wall, W. A., A consistent and comprehensive computational approach for general fluid-structure-contact interaction problems, Available at https://arxiv.org/abs/1905.09744 (2019), 34 pages. (2019) 
  3. Alart, P., Curnier, A., 10.1016/0045-7825(91)90022-X, Comput. Methods Appl. Mech. Eng. 92 (1991), 353-375. (1991) Zbl0825.76353MR1141048DOI10.1016/0045-7825(91)90022-X
  4. Alauzet, F., Fabrèges, B., Fernández, M. A., Landajuela, M., 10.1016/j.cma.2015.12.015, Comput Methods Appl. Mech. Eng. 301 (2016), 300-335. (2016) Zbl1423.76201MR3456852DOI10.1016/j.cma.2015.12.015
  5. Antonietti, P., Verani, M., Vergara, C., Zonca, S., 10.1016/j.finel.2019.02.002, Finite Elem. Anal. Des. 159 (2019), 1-14. (2019) MR3924531DOI10.1016/j.finel.2019.02.002
  6. Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D., 10.1137/S0036142901384162, SIAM J. Numer. Anal. 39 (2002), 1749-1779. (2002) Zbl1008.65080MR1885715DOI10.1137/S0036142901384162
  7. Baaijens, F. P. T., 10.1002/fld.153, Int. J. Numer. Methods Fluids 35 (2001), 743-761. (2001) Zbl0979.76044MR1826849DOI10.1002/fld.153
  8. Basting, S., Quaini, A., Čanić, S., Glowinski, R., 10.1016/j.jcp.2016.11.043, J. Comput. Phys. 331 (2017), 312-336. (2017) Zbl1378.74020MR3588694DOI10.1016/j.jcp.2016.11.043
  9. Bazilevs, Y., Calo, V. M., Zhang, Y., Hughes, T. J. R., 10.1007/s00466-006-0084-3, Comput. Mech. 38 (2006), 310-322. (2006) Zbl1161.74020MR2443159DOI10.1007/s00466-006-0084-3
  10. Bazilevs, Y., Hsu, M.-C., Kiendl, J., Wüchner, R., Bletzinger, K.-U., 10.1002/fld.2454, Int. J. Numer. Methods Fluids 65 (2011), 236-253. (2011) Zbl1428.76087DOI10.1002/fld.2454
  11. Belytschko, T., Moës, N., Usui, S., Parimi, C., 10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M, Int. J. Numer. Methods Eng. 50 (2001), 993-1013. (2001) Zbl0981.74062DOI10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M
  12. Boffi, D., Gastaldi, L., 10.1016/S0045-7949(02)00404-2, Comput. Struct. 81 (2003), 491-501. (2003) MR2001876DOI10.1016/S0045-7949(02)00404-2
  13. Boffi, D., Gastaldi, L., 10.1007/s00211-016-0814-1, Numer. Math. 135 (2017), 711-732. (2017) Zbl06695815MR3606460DOI10.1007/s00211-016-0814-1
  14. Boffi, D., Gastaldi, L., Heltai, L., 10.1142/S0218202507002352, Math. Models Methods Appl. Sci. 17 (2007), 1479-1505. (2007) Zbl1186.76661MR2359913DOI10.1142/S0218202507002352
  15. Borazjani, I., 10.1016/j.cma.2013.01.010, Comput. Methods Appl. Mech. Eng. 257 (2013), 103-116. (2013) Zbl1286.74030MR3043480DOI10.1016/j.cma.2013.01.010
  16. Borazjani, I., Ge, L., Sotiropoulos, F., 10.1016/j.jcp.2008.04.028, J. Comput. Phys. 227 (2008), 7587-7620. (2008) Zbl1213.76129MR2437583DOI10.1016/j.jcp.2008.04.028
  17. Burman, E., 10.1016/j.crma.2010.10.006, C. R., Math., Acad. Sci. Paris 348 (2010), 1217-1220. (2010) Zbl1204.65142MR2738930DOI10.1016/j.crma.2010.10.006
  18. Burman, E., Fernández, M. A., 10.1016/j.crma.2007.09.010, C. R., Math., Acad. Sci. Paris 345 (2007), 467-472. (2007) Zbl1126.74047MR2367927DOI10.1016/j.crma.2007.09.010
  19. Burman, E., Fernández, M. A., 10.1016/j.cma.2008.10.012, Comput. Methods Appl. Mech. Eng. 198 (2009), 766-784. (2009) Zbl1229.76045MR2498525DOI10.1016/j.cma.2008.10.012
  20. Burman, E., Fernández, M. A., 10.1016/j.cma.2014.07.007, Comput. Methods Appl. Mech. Eng. 279 (2014), 497-514. (2014) Zbl1423.74867MR3253479DOI10.1016/j.cma.2014.07.007
  21. Burman, E., Fernández, M. A., Frei, S., 10.1051/m2an/2019072, ESAIM, Math. Model. Numer. Anal. 54 (2020), 531-564. (2020) Zbl1434.74102MR4065144DOI10.1051/m2an/2019072
  22. Burman, E., Fernández, M. A., Hansbo, P., 10.1137/040617686, SIAM J. Numer. Anal. 44 (2006), 1248-1274. (2006) Zbl1344.76049MR2231863DOI10.1137/040617686
  23. Burman, E., Hansbo, P., Larson, M. G., 10.1002/nme.5781, Int. J. Numer. Methods Eng. 114 (2018), 1179-1191. (2018) MR3825018DOI10.1002/nme.5781
  24. Burman, E., Hansbo, P., Larson, M. G., 10.1051/m2an/2018047, ESAIM, Math. Model. Numer. Anal. 53 (2019), 173-195. (2019) Zbl1422.65374MR3937350DOI10.1051/m2an/2018047
  25. Chouly, F., Fabre, M., Hild, P., Mlika, R., Pousin, J., Renard, Y., 10.1007/978-3-319-71431-8_4, Geometrically Unfitted Finite Element Methods and Applications Lecture Notes in Computational Science and Engineering 121. Springer, Cham (2017), 93-141. (2017) Zbl1390.74003MR3806649DOI10.1007/978-3-319-71431-8_4
  26. Chouly, F., Hild, P., 10.1137/12088344X, SIAM J. Numer. Anal. 51 (2013), 1295-1307. (2013) Zbl1268.74033MR3045657DOI10.1137/12088344X
  27. Chouly, F., Hild, P., 10.1016/j.apnum.2012.10.003, Appl. Numer. Math. 65 (2013), 27-40. (2013) Zbl1312.74018MR3008186DOI10.1016/j.apnum.2012.10.003
  28. Chouly, F., Mlika, R., Renard, Y., 10.1007/s00211-018-0950-x, Numer. Math. 139 (2018), 593-631. (2018) Zbl1391.74169MR3814607DOI10.1007/s00211-018-0950-x
  29. Chouly, F., Renard, Y., 10.1186/s40323-018-0124-5, Adv. Model. Simul. Eng. Sci. 5 (2018), Article ID 31, 38 pages. (2018) DOI10.1186/s40323-018-0124-5
  30. Donea, J., Giuliani, S., Halleux, J. P., 10.1016/0045-7825(82)90128-1, Comput. Methods Appl. Mech. Eng. 33 (1982), 689-723. (1982) Zbl0508.73063DOI10.1016/0045-7825(82)90128-1
  31. Farhat, C., Lesoinne, M., Tallec, P. Le, 10.1016/S0045-7825(97)00216-8, Comput. Methods App. Mech. Eng. 157 (1998), 95-114. (1998) Zbl0951.74015MR1624215DOI10.1016/S0045-7825(97)00216-8
  32. Formaggia, L., Nobile, F., A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements, East-West J. Numer. Math. 7 (1999), 105-131. (1999) Zbl0942.65113MR1699243
  33. Formaggia, L., Vergara, C., Zonca, S., 10.1016/j.camwa.2018.05.028, Comput. Math. Appl. 76 (2018), 893-904. (2018) Zbl1428.65081MR3830769DOI10.1016/j.camwa.2018.05.028
  34. Frei, S., 10.11588/heidok.00021590, Heidelberg University, Heildelberg (2016). (2016) DOI10.11588/heidok.00021590
  35. Frei, S., Richter, T., Wick, T., 10.1016/j.jcp.2016.06.015, J. Comput. Phys. 321 (2016), 874-891. (2016) Zbl1349.76202MR3527595DOI10.1016/j.jcp.2016.06.015
  36. Gerstenberger, A., Wall, W. A., 10.1016/j.cma.2007.07.002, Comput. Methods Appl. Mech. Eng. 197 (2008), 1699-1714. (2008) Zbl1194.76117MR2399863DOI10.1016/j.cma.2007.07.002
  37. Glowinski, R., Pan, T.-W., Periaux, J., 10.1016/0045-7825(94)90135-X, Comput. Methods Appl. Mech. Eng. 111 (1994), 283-303. (1994) Zbl0845.73078MR1259864DOI10.1016/0045-7825(94)90135-X
  38. Griffith, B. E., 10.1002/cnm.1445, Int. J. Numer. Methods Biomed. Eng. 28 (2012), 317-345. (2012) Zbl1243.92017MR2910281DOI10.1002/cnm.1445
  39. Hansbo, A., Hansbo, P., 10.1016/j.cma.2003.12.041, Comput. Methods Appl. Mech. Eng. 193 (2004), 3523-3540. (2004) Zbl1068.74076MR2075053DOI10.1016/j.cma.2003.12.041
  40. Hansbo, P., Hermansson, J., Svedberg, T., 10.1016/j.cma.2003.09.029, Comput. Methods Appl. Mech. Eng. 193 (2004), 4195-4206. (2004) Zbl1175.74082MR2087009DOI10.1016/j.cma.2003.09.029
  41. Hirt, C. W., Amsden, A. A., Cook, J. L., 10.1016/0021-9991(74)90051-5, J. Comput. Phys. 14 (1974), 227-253. (1974) Zbl0292.76018DOI10.1016/0021-9991(74)90051-5
  42. Kikuchi, N., Oden, J. T., 10.1137/1.9781611970845, SIAM Studies in Applied Mathematics 8. Society for Industrial and Applied Mathematics, Philadelphia (1988). (1988) Zbl0685.73002MR0961258DOI10.1137/1.9781611970845
  43. LifeV, Available at https://bitbucket.org/lifev-dev/lifev-release/wiki/Home, . 
  44. Liu, Y., Liu, W. K., 10.1016/j.jcp.2006.05.010, J. Comput. Phys. 220 (2006), 139-154. (2006) Zbl1102.92010MR2281624DOI10.1016/j.jcp.2006.05.010
  45. Marom, G., 10.1007/s11831-014-9133-9, Arch. Comput. Methods Eng. 22 (2015), 595-620. (2015) Zbl1348.74099MR3402525DOI10.1007/s11831-014-9133-9
  46. Massing, A., Larson, M. G., Logg, A., Rognes, M. E., 10.2140/camcos.2015.10.97, Commun. Appl. Math. Comput. Sci. 10 (2015), 97-120. (2015) Zbl1326.74122MR3402347DOI10.2140/camcos.2015.10.97
  47. Mittal, R., Iaccarino, G., 10.1146/annurev.fluid.37.061903.175743, Annu. Rev. Fluid Mech. 37 (2005), 239-261. (2005) Zbl1117.76049MR2115343DOI10.1146/annurev.fluid.37.061903.175743
  48. Moës, N., Dolbow, J., Belytschko, T., 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J, Int. J. Numer. Methods Eng. 46 (1999), 131-150. (1999) Zbl0955.74066MR3925464DOI10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  49. Oñate, E., Celigueta, M. A., Idelsohn, S. R., Salazar, F., Suárez, B., 10.1007/s00466-011-0617-2, Comput. Mech. 48 (2011), 307-318. (2011) Zbl1398.76120MR2833086DOI10.1007/s00466-011-0617-2
  50. Patankar, N. A., Singh, P., Joseph, D. D., Glowinski, R., Pan, T.-W., 10.1016/S0301-9322(99)00100-7, Int. J. Multiphase Flow 26 (2000), 1509-1524. (2000) Zbl1137.76712MR2436653DOI10.1016/S0301-9322(99)00100-7
  51. Peskin, C. S., 10.1016/0021-9991(72)90065-4, J. Comput. Phys. 10 (1972), 252-271. (1972) Zbl0244.92002MR0475298DOI10.1016/0021-9991(72)90065-4
  52. Peskin, C. S., 10.1017/S0962492902000077, Acta Numerica 11 (2002), 479-517. (2002) Zbl1123.74309MR2009378DOI10.1017/S0962492902000077
  53. Rannacher, R., Richter, T., 10.1007/978-3-642-14206-2_7, Fluid Structure Interaction II. Modelling, Simulation, Optimization Lecture Notes in Computational Science and Engineering 73. Springer, Berlin (2010), 159-191. (2010) Zbl1214.76005MR3050403DOI10.1007/978-3-642-14206-2_7
  54. Rega, G., 10.1115/1.1777224, Appl. Mech. Rev. 57 (2004), 443-478. (2004) DOI10.1115/1.1777224
  55. Richter, T., 10.1016/j.jcp.2012.08.047, J. Comput. Phys. 233 (2013), 227-240. (2013) MR3000928DOI10.1016/j.jcp.2012.08.047
  56. Richter, T., 10.1007/978-3-319-63970-3, Lecture Notes in Computational Science and Engineering 118. Springer, Cham (2017). (2017) Zbl1374.76001MR3709400DOI10.1007/978-3-319-63970-3
  57. Richter, T., Wick, T., 10.1016/j.cma.2010.04.016, Comput. Methods Appl. Mech. Eng. 199 (2010), 2633-2642. (2010) Zbl1231.74436MR2728815DOI10.1016/j.cma.2010.04.016
  58. Saksono, P. H., Dettmer, W. G., Perić, D., 10.1002/nme.1971, Int. J. Numer. Methods Eng. 71 (2007), 1009-1050. (2007) Zbl1194.76140MR2348756DOI10.1002/nme.1971
  59. Vergara, C., Zonca, S., 10.1007/978-3-319-96649-6_9, Mathematical and Numerical Modeling of the Cardiovascular System and Applications SEMA SIMAI Springer Series 16. Springer, Cham (2018), 209-243. (2018) MR3887547DOI10.1007/978-3-319-96649-6_9
  60. Wriggers, P., Zavarise, G., 10.1002/0470091355.ecm033, Encyclopedia of Computational Mechanics II. Solids and Structures John Wiley & Sons, Chichester (2004), Article ID 6. DOI10.1002/0470091355.ecm033
  61. Xu, D., Kaliviotis, E., Munjiza, A., Avital, E., Ji, C., Williams, J., 10.1016/j.jbiomech.2013.05.010, J. Biomech. 46 (2013), 1810-1817. (2013) DOI10.1016/j.jbiomech.2013.05.010
  62. Zhang, H., Liu, L., Dong, M., Sun, H., 10.1016/j.engstruct.2012.07.019, Eng. Struct. 46 (2013), 28-37. (2013) DOI10.1016/j.engstruct.2012.07.019
  63. Zonca, S., Unfitted Numerical Methods for Fluid-Structure Interaction Arising Between an Incompressible Fluid and an Immersed Thick Structure: PhD. Thesis, Politecnico di Milano, Milano (2018). (2018) 
  64. Zonca, S., Vergara, C., Formaggia, L., 10.1137/16M1097602, SIAM J. Sci. Comput. 40 (2018), B59--B84. (2018) Zbl1395.74087MR3745000DOI10.1137/16M1097602

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.