An adaptive -step conjugate gradient algorithm with dynamic basis updating
Applications of Mathematics (2020)
- Volume: 65, Issue: 2, page 123-151
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topCarson, Erin Claire. "An adaptive $s$-step conjugate gradient algorithm with dynamic basis updating." Applications of Mathematics 65.2 (2020): 123-151. <http://eudml.org/doc/297391>.
@article{Carson2020,
abstract = {The adaptive $s$-step CG algorithm is a solver for sparse symmetric positive definite linear systems designed to reduce the synchronization cost per iteration while still achieving a user-specified accuracy requirement. In this work, we improve the adaptive $s$-step conjugate gradient algorithm by the use of iteratively updated estimates of the largest and smallest Ritz values, which give approximations of the largest and smallest eigenvalues of $A$, using a technique due to G. Meurant and P. Tichý (2018). The Ritz value estimates are used to dynamically update parameters for constructing Newton or Chebyshev polynomials so that the conditioning of the $s$-step bases can be continuously improved throughout the iterations. These estimates are also used to automatically set a variable related to the ratio of the sizes of the error and residual, which was previously treated as an input parameter. We show through numerical experiments that in many cases the new algorithm improves upon the previous adaptive $s$-step approach both in terms of numerical behavior and reduction in number of synchronizations.},
author = {Carson, Erin Claire},
journal = {Applications of Mathematics},
keywords = {conjugate gradient; iterative method; high-performance computing},
language = {eng},
number = {2},
pages = {123-151},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An adaptive $s$-step conjugate gradient algorithm with dynamic basis updating},
url = {http://eudml.org/doc/297391},
volume = {65},
year = {2020},
}
TY - JOUR
AU - Carson, Erin Claire
TI - An adaptive $s$-step conjugate gradient algorithm with dynamic basis updating
JO - Applications of Mathematics
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 2
SP - 123
EP - 151
AB - The adaptive $s$-step CG algorithm is a solver for sparse symmetric positive definite linear systems designed to reduce the synchronization cost per iteration while still achieving a user-specified accuracy requirement. In this work, we improve the adaptive $s$-step conjugate gradient algorithm by the use of iteratively updated estimates of the largest and smallest Ritz values, which give approximations of the largest and smallest eigenvalues of $A$, using a technique due to G. Meurant and P. Tichý (2018). The Ritz value estimates are used to dynamically update parameters for constructing Newton or Chebyshev polynomials so that the conditioning of the $s$-step bases can be continuously improved throughout the iterations. These estimates are also used to automatically set a variable related to the ratio of the sizes of the error and residual, which was previously treated as an input parameter. We show through numerical experiments that in many cases the new algorithm improves upon the previous adaptive $s$-step approach both in terms of numerical behavior and reduction in number of synchronizations.
LA - eng
KW - conjugate gradient; iterative method; high-performance computing
UR - http://eudml.org/doc/297391
ER -
References
top- Bai, Z., Hu, D., Reichel, L., 10.1093/imanum/14.4.563, IMA J. Numer. Anal. 14 (1994), 563-581. (1994) Zbl0818.65022MR1298533DOI10.1093/imanum/14.4.563
- Bouras, A., Frayssé, V., A Relaxation Strategy for Inexact Matrix-Vector Products for Krylov Methods, CERFACS Technical Report TR/PA/00/15, CERFACS, Toulouse (2000). (2000)
- Bouras, A., Frayssé, V., 10.1137/S0895479801384743, SIAM J. Matrix Anal. Appl. 26 (2005), 660-678. (2005) Zbl1075.65041MR2137478DOI10.1137/S0895479801384743
- Calvetti, D., Golub, G. H., Reichel, L., 10.1007/s002110050016, Numer. Math. 67 (1994), 21-40. (1994) Zbl0796.65033MR1258973DOI10.1007/s002110050016
- Calvetti, D., Reichel, L., 10.1023/A:1025555803588, Numer. Algorithms 33 (2003), 153-161. (2003) Zbl1035.65156MR2005559DOI10.1023/A:1025555803588
- Carson, E. C., Communication-Avoiding Krylov Subspace Methods in Theory and Practice, Ph.D. Thesis, University of California, Berkeley (2015). (2015) MR3450264
- Carson, E. C., 10.1137/16M1107942, SIAM J. Matrix Anal. Appl. 39 (2018), 1318-1338. (2018) Zbl1398.65044MR3846291DOI10.1137/16M1107942
- Carson, E., Demmel, J., 10.1137/120893057, SIAM J. Matrix Anal. Appl. 35 (2014), 22-43. (2014) Zbl1302.65075MR3152736DOI10.1137/120893057
- Carson, E., Demmel, J. W., 10.1137/140990735, SIAM J. Matrix Anal. Appl. 36 (2015), 793-819. (2015) Zbl1319.65024MR3357631DOI10.1137/140990735
- Chronopoulos, A. T., Gear, C. W., 10.1016/0377-0427(89)90045-9, J. Comput. Appl. Math. 25 (1989), 153-168. (1989) Zbl0669.65021MR0988055DOI10.1016/0377-0427(89)90045-9
- Davis, T. A., Hu, Y., 10.1145/2049662.2049663, ACM Trans. Math. Softw. 38 (2011), Article No. 1, 25 pages. (2011) Zbl1365.65123MR2865011DOI10.1145/2049662.2049663
- Sturler, E. de, A parallel variant of GMRES, IMACS'91: Proceedings of the 13th IMACS World Congress on Computation and Applied Mathematics Criterion Press, Dublin (1991), 602-683. (1991) MR1204659
- Sturler, E. de, Vorst, H. A. van der, 10.1016/0168-9274(95)00079-A, Appl. Numer. Math. 18 (1995), 441-459. (1995) Zbl0842.65019DOI10.1016/0168-9274(95)00079-A
- Demmel, J., Hoemmen, M., Mohiyuddin, M., Yelick, K., 10.1109/IPDPS.2008.4536305, IEEE International Symposium on Parallel and Distributed Processing IEEE, Miami (2008), 1-12. (2008) DOI10.1109/IPDPS.2008.4536305
- Dongarra, J., Beckman, P., Moore, T., 10.1177/1094342010391989, Int. J. High Perf. Comput. Appl. 25 (2011), 3-60. (2011) DOI10.1177/1094342010391989
- Dongarra, J., Heroux, M. A., Luszczek, P., 10.1177/1094342015593158, Int. J. High Perf. Comput. Appl. 30 (2016), 3-10. (2016) MR3823058DOI10.1177/1094342015593158
- Erhel, J., A parallel GMRES version for general sparse matrices, ETNA, Electron. Trans. Numer. Anal. 3 (1995), 160-176. (1995) Zbl0860.65021MR1368335
- Gautschi, W., 10.2307/2006047, Math. Comput. 33 (1979), 343-352. (1979) Zbl0399.41002MR0514830DOI10.2307/2006047
- Ghysels, P., Ashby, T. J., Meerbergen, K., Vanroose, W., 10.1137/12086563X, SIAM J. Sci. Comput. 35 (2013), C48--C71. (2013) Zbl1273.65050MR3033078DOI10.1137/12086563X
- Ghysels, P., Vanroose, W., 10.1016/j.parco.2013.06.001, Parallel Comput. 40 (2014), 224-238. (2014) MR3225342DOI10.1016/j.parco.2013.06.001
- Greenbaum, A., 10.1016/0024-3795(89)90285-1, Linear Algebra Appl. 113 (1989), 7-63. (1989) Zbl0662.65032MR0978581DOI10.1016/0024-3795(89)90285-1
- Greenbaum, A., 10.1137/S0895479895284944, SIAM J. Matrix Anal. Appl. 18 (1997), 535-551. (1997) Zbl0873.65027MR1453539DOI10.1137/S0895479895284944
- Gutknecht, M. H., Strakoš, Z., 10.1137/S0895479897331862, SIAM J. Matrix Anal. Appl. 22 (2000), 213-229. (2000) Zbl0976.65030MR1779725DOI10.1137/S0895479897331862
- M. Heroux, R. Bartlett, V. H. R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long, R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring, A. Williams, An Overview of Trilinos, Technical Report SAND2003-2927, Sandia National Laboratories, Albuquerque (2003), 1-42 Available at http://www.sandia.gov/ {tgkolda/pubs/pubfiles/SAND2003-2927.pdf}. (2003)
- Hestenes, M. R., Stiefel, E., 10.6028/jres.049.044, J. Res. Natl. Bur. Stand. 49 (1952), 409-436. (1952) Zbl0048.09901MR0060307DOI10.6028/jres.049.044
- Hindmarsh, A. C., Walker, H., Note on a Householder Implementation of the GMRES Method, Technical Report UCID-20899, Lawrence Livermore National Laboratory, Logan (1986), Available at https://www.osti.gov/biblio/ 7008035-note-householder-implementation-gmres-method. (1986) MR0069574
- Hoemmen, M., Communication-avoiding Krylov subspace methods, Ph.D. Thesis, University of California, Berkeley (2010). (2010) MR2941535
- Imberti, D., Erhel, J., 10.1553/etna_vol47s206, ETNA, Electron. Trans. Numer. Anal. 47 (2017), 206-230. (2017) Zbl1386.65108MR3747143DOI10.1553/etna_vol47s206
- Joubert, W. D., Carey, G. F., 10.1080/00207169208804107, Int. J. Comput. Math. 44 (1992), 243-267. (1992) Zbl0759.65008DOI10.1080/00207169208804107
- Liesen, J., Strakoš, Z., Krylov Subspace Methods. Principles and Analysis, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford (2013). (2013) Zbl1263.65034MR3024841
- Manteuffel, T. A., 10.1007/BF01397475, Numer. Math. 31 (1978), 183-208. (1978) Zbl0413.65032MR0509674DOI10.1007/BF01397475
- Meurant, G., Strakoš, Z., 10.1017/S096249290626001X, Acta Numerica 15 (2006), 471-542. (2006) Zbl1113.65032MR2269746DOI10.1017/S096249290626001X
- Meurant, G., Tichý, P., 10.1007/s11075-018-0634-8, Numer. Algorithms 82 (2019), 937-968. (2019) Zbl07128072MR4027652DOI10.1007/s11075-018-0634-8
- Philippe, B., Reichel, L., 10.1016/j.apnum.2010.12.009, Appl. Numer. Math. 62 (2012), 1171-1186. (2012) Zbl1253.65049MR2934761DOI10.1016/j.apnum.2010.12.009
- Reichel, L., 10.1007/BF02017352, BIT 30 (1990), 332-346. (1990) Zbl0702.65012MR1039671DOI10.1007/BF02017352
- Saad, Y., 10.1137/1.9780898718003, SIAM Society for Industrial and Applied Mathematics, Philadelphia (2003). (2003) Zbl1031.65046MR1990645DOI10.1137/1.9780898718003
- Simoncini, V., Szyld, D. B., 10.1137/S1064827502406415, SIAM J. Sci. Comput. 25 (2003), 454-477. (2003) Zbl1048.65032MR2058070DOI10.1137/S1064827502406415
- Sleijpen, G. L. G., Vorst, H. A. Van Der, 10.1007/BF02309342, Computing 56 (1996), 141-163. (1996) Zbl0842.65018MR1382009DOI10.1007/BF02309342
- Vorst, H. A. Van Der, Ye, Q., 10.1137/S1064827599353865, SIAM J. Sci. Comput. 22 (2000), 835-852. (2000) Zbl0983.65039MR1785337DOI10.1137/S1064827599353865
- Rosendale, J. Van, Minimizing inner product data dependencies in conjugate gradient iteration, International Conference on Parallel Processing, ICPP'83 IEEE Computer Society, Los Alamitos (1983), 44-46. (1983)
- Williams, S., Lijewski, M., Almgren, A., Straalen, B. Van, Carson, E., Knight, N., Demmel, J., 10.1109/ipdps.2014.119, 28th IEEE International Parallel and Distributed Processing Symposium IEEE Computer Society, Los Alamitos (2014), 1149-1158. (2014) DOI10.1109/ipdps.2014.119
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.