T 2 and T 3 objects at p in the category of proximity spaces

Muammer Kula; Samed Özkan

Mathematica Bohemica (2020)

  • Volume: 145, Issue: 2, page 177-190
  • ISSN: 0862-7959

Abstract

top
In previous papers, various notions of pre-Hausdorff, Hausdorff and regular objects at a point p in a topological category were introduced and compared. The main objective of this paper is to characterize each of these notions of pre-Hausdorff, Hausdorff and regular objects locally in the category of proximity spaces. Furthermore, the relationships that arise among the various Pre T 2 , T i , i = 0 , 1 , 2 , 3 , structures at a point p are investigated. Finally, we examine the relationships between the generalized separation properties and the separation properties at a point p in this category.

How to cite

top

Kula, Muammer, and Özkan, Samed. "$T_{2}$ and $T_{3}$ objects at $p$ in the category of proximity spaces." Mathematica Bohemica 145.2 (2020): 177-190. <http://eudml.org/doc/297397>.

@article{Kula2020,
abstract = {In previous papers, various notions of pre-Hausdorff, Hausdorff and regular objects at a point $p$ in a topological category were introduced and compared. The main objective of this paper is to characterize each of these notions of pre-Hausdorff, Hausdorff and regular objects locally in the category of proximity spaces. Furthermore, the relationships that arise among the various $\{\rm Pre\}T_\{2\}$, $T_\{i\}$, $i=0,1,2,3$, structures at a point $p$ are investigated. Finally, we examine the relationships between the generalized separation properties and the separation properties at a point $p$ in this category.},
author = {Kula, Muammer, Özkan, Samed},
journal = {Mathematica Bohemica},
keywords = {topological category; proximity space; Hausdorff space; regular space},
language = {eng},
number = {2},
pages = {177-190},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$T_\{2\}$ and $T_\{3\}$ objects at $p$ in the category of proximity spaces},
url = {http://eudml.org/doc/297397},
volume = {145},
year = {2020},
}

TY - JOUR
AU - Kula, Muammer
AU - Özkan, Samed
TI - $T_{2}$ and $T_{3}$ objects at $p$ in the category of proximity spaces
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 2
SP - 177
EP - 190
AB - In previous papers, various notions of pre-Hausdorff, Hausdorff and regular objects at a point $p$ in a topological category were introduced and compared. The main objective of this paper is to characterize each of these notions of pre-Hausdorff, Hausdorff and regular objects locally in the category of proximity spaces. Furthermore, the relationships that arise among the various ${\rm Pre}T_{2}$, $T_{i}$, $i=0,1,2,3$, structures at a point $p$ are investigated. Finally, we examine the relationships between the generalized separation properties and the separation properties at a point $p$ in this category.
LA - eng
KW - topological category; proximity space; Hausdorff space; regular space
UR - http://eudml.org/doc/297397
ER -

References

top
  1. Adámek, J., Herrlich, H., Strecker, G. E., Abstract and Concrete Categories: The Joy of Cats, Repr. Theory Appl. Categ. No. 17 (2006), 1-507. (2006) Zbl1113.18001MR2240597
  2. Baran, M., Separation properties, Indian J. Pure Appl. Math. 23 (1992), 333-341. (1992) Zbl0767.54014MR1166899
  3. Baran, M., The notion of closedness in topological categories, Commentat. Math. Univ. Carolin. 34 (1993), 383-395. (1993) Zbl0780.18003MR1241748
  4. Baran, M., Generalized local separation properties, Indian J. Pure Appl. Math. 25 (1994), 615-620. (1994) Zbl0830.18001MR1285223
  5. Baran, M., Separation properties in topological categories, Math. Balk., New Ser. 10 (1996), 39-48. (1996) Zbl1036.54502MR1429148
  6. Baran, M., A notion of compactness in topological categories, Publ. Math. 50 (1997), 221-234. (1997) Zbl0880.54010MR1446467
  7. Baran, M., T 3 and T 4 -objects in topological categories, Indian J. Pure Appl. Math. 29 (1998), 59-69. (1998) Zbl0920.54009MR1613340
  8. Baran, M., 10.1023/A:1006768916033, Acta Math. Hung. 87 (2000), 33-45. (2000) Zbl0963.54003MR1755877DOI10.1023/A:1006768916033
  9. Baran, M., 10.1007/s10485-008-9161-4, Appl. Categ. Struct. 17 (2009), 591-602. (2009) Zbl1196.54018MR2564124DOI10.1007/s10485-008-9161-4
  10. Baran, M., Al-Safar, J., 10.1016/j.topol.2011.06.043, Topology Appl. 158 (2011), 2076-2084. (2011) Zbl1226.54015MR2825362DOI10.1016/j.topol.2011.06.043
  11. Baran, M., Altindis, H., 10.1007/BF00052193, Acta Math. Hung. 71 (1996), 41-48. (1996) Zbl0857.18002MR1398023DOI10.1007/BF00052193
  12. Baran, M., Kula, M., A note on connectedness, Publ. Math. 68 (2006), 489-501. (2006) Zbl1099.54019MR2212333
  13. Baran, M., Kula, S., Baran, T. M., Qasim, M., 10.2298/FIL1601131B, Filomat 30 (2016), 131-140. (2016) Zbl06749669MR3498758DOI10.2298/FIL1601131B
  14. Dikranjan, D., Giuli, E., 10.1016/0166-8641(87)90100-3, Topology Appl. 27 (1987), 129-143. (1987) Zbl0634.54008MR0911687DOI10.1016/0166-8641(87)90100-3
  15. Efremovich, V. A., Infinitesimal spaces, Dokl. Akad. Nauk SSSR, N. Ser. 76 (1951), 341-343 Russian. (1951) Zbl0042.16703MR0040748
  16. Efremovich, V. A., The geometry of proximity. I, Mat. Sb., N. Ser. 31(73) (1952), 189-200 Russian. (1952) Zbl0046.16302MR0055659
  17. Friedler, L., 10.2307/2039491, Proc. Am. Math. Soc. 37 (1973), 589-594. (1973) Zbl0228.54021MR0402691DOI10.2307/2039491
  18. Hunsaker, W. N., Sharma, P. L., 10.2307/2039971, Proc. Am. Math. Soc. 45 (1974), 419-425. (1974) Zbl0261.54019MR0353265DOI10.2307/2039971
  19. Johnstone, P. T., Topos Theory, London Mathematical Society Monographs, Vol. 10. Academic Press, London (1977). (1977) Zbl0368.18001MR0470019
  20. Kula, M., 10.1007/s10474-012-0238-z, Acta Math. Hung. 136 (2012), 1-15. (2012) Zbl1274.54048MR2925752DOI10.1007/s10474-012-0238-z
  21. Kula, M., Maraşlı, T., Özkan, S., 10.2298/FIL1407483K, Filomat 28 (2014), 1483-1492. (2014) Zbl06704866MR3360054DOI10.2298/FIL1407483K
  22. Kula, M., Özkan, S., Maraşlı, T., 10.2298/fil1712837k, Filomat 31 (2017), 3837-3846. (2017) MR3703876DOI10.2298/fil1712837k
  23. Naimpally, S. A., Warrack, B. D., Proximity Spaces, Cambridge Tracts in Mathematics and Mathematical Physics, No. 59. Cambridge University Press, London (1970). (1970) Zbl0206.24601MR0278261
  24. Preuss, G., 10.1007/978-94-009-2859-6, Mathematics and Its Applications 39. D. Reidel Publishing Company, Dordrecht (1988). (1988) Zbl0649.54001MR0937052DOI10.1007/978-94-009-2859-6
  25. Sharma, P. L., 10.2140/pjm.1971.37.515, Pac. J. Math. 37 (1971), 515-526. (1971) Zbl0216.19301MR0305358DOI10.2140/pjm.1971.37.515
  26. Smirnov, Y. M., On proximity spaces, Mat. Sb., N. Ser. 31(73) (1952), 543-574 Russian. (1952) Zbl0047.41903MR0055661
  27. Willard, S., General Topology, Addison-Wesley Series in Mathematics. Publication Data Reading, Addison-Wesley Publishing Company, Massachusetts (1970). (1970) Zbl0205.26601MR0264581

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.