Pell and Pell-Lucas numbers of the form
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 1, page 281-289
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topQu, Yunyun, and Zeng, Jiwen. "Pell and Pell-Lucas numbers of the form $-2^a-3^b+5^c$." Czechoslovak Mathematical Journal 70.1 (2020): 281-289. <http://eudml.org/doc/297399>.
@article{Qu2020,
abstract = {In this paper, we find all Pell and Pell-Lucas numbers written in the form $-2^a-3^b+5^c$, in nonnegative integers $a$, $b$, $c$, with $0\le \max \lbrace a,b\rbrace \le c$.},
author = {Qu, Yunyun, Zeng, Jiwen},
journal = {Czechoslovak Mathematical Journal},
keywords = {Pell number; Pell-Lucas number; linear form in logarithms; continued fraction; reduction method},
language = {eng},
number = {1},
pages = {281-289},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Pell and Pell-Lucas numbers of the form $-2^a-3^b+5^c$},
url = {http://eudml.org/doc/297399},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Qu, Yunyun
AU - Zeng, Jiwen
TI - Pell and Pell-Lucas numbers of the form $-2^a-3^b+5^c$
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 1
SP - 281
EP - 289
AB - In this paper, we find all Pell and Pell-Lucas numbers written in the form $-2^a-3^b+5^c$, in nonnegative integers $a$, $b$, $c$, with $0\le \max \lbrace a,b\rbrace \le c$.
LA - eng
KW - Pell number; Pell-Lucas number; linear form in logarithms; continued fraction; reduction method
UR - http://eudml.org/doc/297399
ER -
References
top- Bravo, E. F., Bravo, J. J., 10.1007/s10986-015-9282-z, Lith. Math. J. 55 (2015), 301-311. (2015) Zbl1356.11009MR3379028DOI10.1007/s10986-015-9282-z
- Bravo, J. J., Das, P., Guzmán, S., Laishram, S., 10.1142/S1793042115500682, Int. J. Number Theory 11 (2015), 1259-1274. (2015) Zbl1390.11068MR3340693DOI10.1142/S1793042115500682
- Bugeaud, Y., Mignotte, M., Siksek, S., 10.4007/annals.2006.163.969, Ann. Math. (2) 163 (2006), 969-1018. (2006) Zbl1113.11021MR2215137DOI10.4007/annals.2006.163.969
- Dujella, A., Pethő, A., 10.1093/qjmath/49.195.291, Q. J. Math., Oxf. II. Ser. 49 (1998), 291-306. (1998) Zbl0911.11018MR1645552DOI10.1093/qjmath/49.195.291
- Koshy, T., 10.1002/9781118033067, Pure and Applied Mathematics, A Wiley-Interscience Series of Texts, Monographs, and Tracts, Wiley, New York (2001). (2001) Zbl0984.11010MR1855020DOI10.1002/9781118033067
- Luca, F., 10.1007/978-94-011-4271-7_24, Applications of Fibonacci Numbers, Volume 8 F. T. Howard Kluwer Academic Publishers, Dordrecht (1999), 241-249. (1999) Zbl0979.11012MR1737677DOI10.1007/978-94-011-4271-7_24
- Luca, F., Szalay, L., Fibonacci numbers of the form , Fibonacci Q. 45 (2007), 98-103. (2007) Zbl1228.11021MR2407759
- Matveev, E. M., 10.1070/IM2000v064n06ABEH000314, Izv. Math. 64 (2000), 1217-1269 English. Russian original translation from Izv. Ross. Akad. Nauk, Ser. Mat. 64 2000 125-180. (2000) Zbl1013.11043MR1817252DOI10.1070/IM2000v064n06ABEH000314
- McDaniel, W. L., Triangular numbers in the Pell sequence, Fibonacci Q. 34 (1996), 105-107. (1996) Zbl0860.11007MR1386977
- Pethő, A., The Pell sequence contains only trivial perfect powers, Sets, Graphs and Numbers G. Halász, et al. Colloq. Math. Soc. János Bolyai 60, North-Holland Publishing Company, Amsterdam (1992), 561-568. (1992) Zbl0790.11021MR1218218
- Robbins, N., 10.1007/978-94-015-7801-1_9, Applications of Fibonacci Numbers Kluwer Acad. Publ., Dordrecht (1988), 77-88. (1988) Zbl0647.10013MR0951908DOI10.1007/978-94-015-7801-1_9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.