Pseudometrics on Ext-semigroups
Changguo Wei; Xiangmei Zhao; Shudong Liu
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 2, page 435-451
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWei, Changguo, Zhao, Xiangmei, and Liu, Shudong. "Pseudometrics on Ext-semigroups." Czechoslovak Mathematical Journal 70.2 (2020): 435-451. <http://eudml.org/doc/297402>.
@article{Wei2020,
abstract = {This paper considers certain pseudometric structures on Ext-semigroups and gives a unified characterization of several topologies on Ext-semigroups. It is demonstrated that these Ext-semigroups are complete topological semigroups. To this end, it is proved that a metric induces a pseudometric on a quotient space with respect to an equivalence relation if it has certain invariance. We give some properties of this pseudometric space and prove that the topology induced by the pseudometric coincides with the one induced by the quotient map.},
author = {Wei, Changguo, Zhao, Xiangmei, Liu, Shudong},
journal = {Czechoslovak Mathematical Journal},
keywords = {pseudometric; topological group; extension; Ext-group},
language = {eng},
number = {2},
pages = {435-451},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Pseudometrics on Ext-semigroups},
url = {http://eudml.org/doc/297402},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Wei, Changguo
AU - Zhao, Xiangmei
AU - Liu, Shudong
TI - Pseudometrics on Ext-semigroups
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 2
SP - 435
EP - 451
AB - This paper considers certain pseudometric structures on Ext-semigroups and gives a unified characterization of several topologies on Ext-semigroups. It is demonstrated that these Ext-semigroups are complete topological semigroups. To this end, it is proved that a metric induces a pseudometric on a quotient space with respect to an equivalence relation if it has certain invariance. We give some properties of this pseudometric space and prove that the topology induced by the pseudometric coincides with the one induced by the quotient map.
LA - eng
KW - pseudometric; topological group; extension; Ext-group
UR - http://eudml.org/doc/297402
ER -
References
top- Arveson, W., 10.1215/S0012-7094-77-04414-3, Duke Math. J. 44 (1977), 329-355. (1977) Zbl0368.46052MR0438137DOI10.1215/S0012-7094-77-04414-3
- Blackadar, B., -Theory for Operator Algebras, Mathematical Sciences Research Institute Publications 5, Cambridge University Press, Cambridge (1998). (1998) Zbl0913.46054MR1656031
- Brown, L. G., The universal coefficient theorem for Ext and quasidiagonality, Operator Algebras and Group Representations, Vol. I Monographs and Studies in Mathematics 17, Pitman, Boston (1984), 60-64. (1984) Zbl0548.46055MR0731763
- Brown, L. G., Douglas, R. G., Fillmore, P. A., 10.1090/S0002-9904-1973-13284-7, Bull. Am. Math. Soc. 79 (1973), 973-978. (1973) Zbl0277.46052MR0346540DOI10.1090/S0002-9904-1973-13284-7
- Brown, L. G., Douglas, R. G., Fillmore, P. A., 10.2307/1970999, Ann. Math. (2) 105 (1977), 265-324. (1977) Zbl0376.46036MR0458196DOI10.2307/1970999
- Dadarlat, M., 10.1016/j.jfa.2005.02.015, J. Func. Anal. 228 (2005), 394-418. (2005) Zbl1088.46042MR2175412DOI10.1016/j.jfa.2005.02.015
- Elliott, G. A., Kucerovsky, D., 10.2140/pjm.2001.198.385, Pac. J. Math. 198 (2001), 385-409. (2001) Zbl1058.46041MR1835515DOI10.2140/pjm.2001.198.385
- Kucerovsky, D., Ng, P. W., The corona factorization property and approximate unitary equivalence, Houston J. Math. 32 (2006), 531-550. (2006) Zbl1111.46050MR2219330
- Rosenberg, J., Schochet, C., 10.1215/S0012-7094-87-05524-4, Duke Math. J. 55 (1987), 431-474. (1987) Zbl0644.46051MR0894590DOI10.1215/S0012-7094-87-05524-4
- Salinas, N., 10.1215/S0012-7094-77-04435-0, Duke Math. J. 44 (1977), 777-794. (1977) Zbl0391.46057MR0512388DOI10.1215/S0012-7094-77-04435-0
- Salinas, N., Quasitriangular extensions of -algebras and problems on joint quasitriangularity of operators, J. Oper. Theory 10 (1983), 167-205. (1983) Zbl0539.47011MR0715566
- Salinas, N., Relative quasidiagonality and -theory, Houston J. Math. 18 (1992), 97-116. (1992) Zbl0772.46039MR1159442
- Schochet, C. L., 10.1006/jfan.2001.3784, J. Func. Anal. 186 (2001), 25-61. (2001) Zbl0990.19003MR1863291DOI10.1006/jfan.2001.3784
- Schochet, C. L., 10.1006/jfan.2002.3949, J. Func. Anal. 194 (2002), 263-287. (2002) Zbl1029.19004MR1934604DOI10.1006/jfan.2002.3949
- Schochet, C. L., The fine structure of the Kasparov groups III: Relative quasidiagonality, J. Oper. Theory 53 (2005), 91-117. (2005) Zbl1119.19006MR2132689
- Wei, C., 10.1016/j.jfa.2009.10.009, J. Funct. Anal. 258 (2010), 650-664. (2010) Zbl1194.46103MR2557950DOI10.1016/j.jfa.2009.10.009
- Wei, C., 10.1142/S0129167X11007227, Int. J. Math. 22 (2011), 1187-1208. (2011) Zbl1232.46059MR2826560DOI10.1142/S0129167X11007227
- Wei, C., On the classification of certain unital extensions of -algebras, Houston J. Math. 41 (2015), 965-991. (2015) Zbl1344.46050MR3423693
- Wei, C., Liu, S., 10.1216/RMJ-2017-47-3-997, Rocky Mt. J. Math. 47 (2017), 997-1012. (2017) Zbl1380.46042MR3682159DOI10.1216/RMJ-2017-47-3-997
- Wei, C., Wang, L., 10.1007/s11425-010-4011-x, Sci. China, Math. 53 (2010), 1565-1570. (2010) Zbl1200.46050MR2658613DOI10.1007/s11425-010-4011-x
- Wei, C., Wang, L., 10.1007/s11425-010-4132-2, Sci. China, Math. 54 (2011), 281-286. (2011) Zbl1225.46051MR2771204DOI10.1007/s11425-010-4132-2
- Xing, R., Wei, C., Liu, S., 10.1007/s12044-012-0086-3, Proc. Indian Acad. Sci., Math. Sci. 122 (2012), 339-350. (2012) Zbl1264.46052MR2972657DOI10.1007/s12044-012-0086-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.