Pseudometrics on Ext-semigroups

Changguo Wei; Xiangmei Zhao; Shudong Liu

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 2, page 435-451
  • ISSN: 0011-4642

Abstract

top
This paper considers certain pseudometric structures on Ext-semigroups and gives a unified characterization of several topologies on Ext-semigroups. It is demonstrated that these Ext-semigroups are complete topological semigroups. To this end, it is proved that a metric induces a pseudometric on a quotient space with respect to an equivalence relation if it has certain invariance. We give some properties of this pseudometric space and prove that the topology induced by the pseudometric coincides with the one induced by the quotient map.

How to cite

top

Wei, Changguo, Zhao, Xiangmei, and Liu, Shudong. "Pseudometrics on Ext-semigroups." Czechoslovak Mathematical Journal 70.2 (2020): 435-451. <http://eudml.org/doc/297402>.

@article{Wei2020,
abstract = {This paper considers certain pseudometric structures on Ext-semigroups and gives a unified characterization of several topologies on Ext-semigroups. It is demonstrated that these Ext-semigroups are complete topological semigroups. To this end, it is proved that a metric induces a pseudometric on a quotient space with respect to an equivalence relation if it has certain invariance. We give some properties of this pseudometric space and prove that the topology induced by the pseudometric coincides with the one induced by the quotient map.},
author = {Wei, Changguo, Zhao, Xiangmei, Liu, Shudong},
journal = {Czechoslovak Mathematical Journal},
keywords = {pseudometric; topological group; extension; Ext-group},
language = {eng},
number = {2},
pages = {435-451},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Pseudometrics on Ext-semigroups},
url = {http://eudml.org/doc/297402},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Wei, Changguo
AU - Zhao, Xiangmei
AU - Liu, Shudong
TI - Pseudometrics on Ext-semigroups
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 2
SP - 435
EP - 451
AB - This paper considers certain pseudometric structures on Ext-semigroups and gives a unified characterization of several topologies on Ext-semigroups. It is demonstrated that these Ext-semigroups are complete topological semigroups. To this end, it is proved that a metric induces a pseudometric on a quotient space with respect to an equivalence relation if it has certain invariance. We give some properties of this pseudometric space and prove that the topology induced by the pseudometric coincides with the one induced by the quotient map.
LA - eng
KW - pseudometric; topological group; extension; Ext-group
UR - http://eudml.org/doc/297402
ER -

References

top
  1. Arveson, W., 10.1215/S0012-7094-77-04414-3, Duke Math. J. 44 (1977), 329-355. (1977) Zbl0368.46052MR0438137DOI10.1215/S0012-7094-77-04414-3
  2. Blackadar, B., K -Theory for Operator Algebras, Mathematical Sciences Research Institute Publications 5, Cambridge University Press, Cambridge (1998). (1998) Zbl0913.46054MR1656031
  3. Brown, L. G., The universal coefficient theorem for Ext and quasidiagonality, Operator Algebras and Group Representations, Vol. I Monographs and Studies in Mathematics 17, Pitman, Boston (1984), 60-64. (1984) Zbl0548.46055MR0731763
  4. Brown, L. G., Douglas, R. G., Fillmore, P. A., 10.1090/S0002-9904-1973-13284-7, Bull. Am. Math. Soc. 79 (1973), 973-978. (1973) Zbl0277.46052MR0346540DOI10.1090/S0002-9904-1973-13284-7
  5. Brown, L. G., Douglas, R. G., Fillmore, P. A., 10.2307/1970999, Ann. Math. (2) 105 (1977), 265-324. (1977) Zbl0376.46036MR0458196DOI10.2307/1970999
  6. Dadarlat, M., 10.1016/j.jfa.2005.02.015, J. Func. Anal. 228 (2005), 394-418. (2005) Zbl1088.46042MR2175412DOI10.1016/j.jfa.2005.02.015
  7. Elliott, G. A., Kucerovsky, D., 10.2140/pjm.2001.198.385, Pac. J. Math. 198 (2001), 385-409. (2001) Zbl1058.46041MR1835515DOI10.2140/pjm.2001.198.385
  8. Kucerovsky, D., Ng, P. W., The corona factorization property and approximate unitary equivalence, Houston J. Math. 32 (2006), 531-550. (2006) Zbl1111.46050MR2219330
  9. Rosenberg, J., Schochet, C., 10.1215/S0012-7094-87-05524-4, Duke Math. J. 55 (1987), 431-474. (1987) Zbl0644.46051MR0894590DOI10.1215/S0012-7094-87-05524-4
  10. Salinas, N., 10.1215/S0012-7094-77-04435-0, Duke Math. J. 44 (1977), 777-794. (1977) Zbl0391.46057MR0512388DOI10.1215/S0012-7094-77-04435-0
  11. Salinas, N., Quasitriangular extensions of C * -algebras and problems on joint quasitriangularity of operators, J. Oper. Theory 10 (1983), 167-205. (1983) Zbl0539.47011MR0715566
  12. Salinas, N., Relative quasidiagonality and K K -theory, Houston J. Math. 18 (1992), 97-116. (1992) Zbl0772.46039MR1159442
  13. Schochet, C. L., 10.1006/jfan.2001.3784, J. Func. Anal. 186 (2001), 25-61. (2001) Zbl0990.19003MR1863291DOI10.1006/jfan.2001.3784
  14. Schochet, C. L., 10.1006/jfan.2002.3949, J. Func. Anal. 194 (2002), 263-287. (2002) Zbl1029.19004MR1934604DOI10.1006/jfan.2002.3949
  15. Schochet, C. L., The fine structure of the Kasparov groups III: Relative quasidiagonality, J. Oper. Theory 53 (2005), 91-117. (2005) Zbl1119.19006MR2132689
  16. Wei, C., 10.1016/j.jfa.2009.10.009, J. Funct. Anal. 258 (2010), 650-664. (2010) Zbl1194.46103MR2557950DOI10.1016/j.jfa.2009.10.009
  17. Wei, C., 10.1142/S0129167X11007227, Int. J. Math. 22 (2011), 1187-1208. (2011) Zbl1232.46059MR2826560DOI10.1142/S0129167X11007227
  18. Wei, C., On the classification of certain unital extensions of C * -algebras, Houston J. Math. 41 (2015), 965-991. (2015) Zbl1344.46050MR3423693
  19. Wei, C., Liu, S., 10.1216/RMJ-2017-47-3-997, Rocky Mt. J. Math. 47 (2017), 997-1012. (2017) Zbl1380.46042MR3682159DOI10.1216/RMJ-2017-47-3-997
  20. Wei, C., Wang, L., 10.1007/s11425-010-4011-x, Sci. China, Math. 53 (2010), 1565-1570. (2010) Zbl1200.46050MR2658613DOI10.1007/s11425-010-4011-x
  21. Wei, C., Wang, L., 10.1007/s11425-010-4132-2, Sci. China, Math. 54 (2011), 281-286. (2011) Zbl1225.46051MR2771204DOI10.1007/s11425-010-4132-2
  22. Xing, R., Wei, C., Liu, S., 10.1007/s12044-012-0086-3, Proc. Indian Acad. Sci., Math. Sci. 122 (2012), 339-350. (2012) Zbl1264.46052MR2972657DOI10.1007/s12044-012-0086-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.