Random fields and random sampling

Sandra Dias; Maria da Graça Temido

Kybernetika (2019)

  • Volume: 55, Issue: 6, page 897-914
  • ISSN: 0023-5954

Abstract

top
We study the limiting distribution of the maximum value of a stationary bivariate real random field satisfying suitable weak mixing conditions. In the first part, when the double dimensions of the random samples have a geometric growing pattern, a max-semistable distribution is obtained. In the second part, considering the random field sampled at double random times, a mixture distribution is established for the limiting distribution of the maximum.

How to cite

top

Dias, Sandra, and Temido, Maria da Graça. "Random fields and random sampling." Kybernetika 55.6 (2019): 897-914. <http://eudml.org/doc/297411>.

@article{Dias2019,
abstract = {We study the limiting distribution of the maximum value of a stationary bivariate real random field satisfying suitable weak mixing conditions. In the first part, when the double dimensions of the random samples have a geometric growing pattern, a max-semistable distribution is obtained. In the second part, considering the random field sampled at double random times, a mixture distribution is established for the limiting distribution of the maximum.},
author = {Dias, Sandra, Temido, Maria da Graça},
journal = {Kybernetika},
keywords = {stationary random fields; max-semistable laws; random double sample size},
language = {eng},
number = {6},
pages = {897-914},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Random fields and random sampling},
url = {http://eudml.org/doc/297411},
volume = {55},
year = {2019},
}

TY - JOUR
AU - Dias, Sandra
AU - Temido, Maria da Graça
TI - Random fields and random sampling
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 6
SP - 897
EP - 914
AB - We study the limiting distribution of the maximum value of a stationary bivariate real random field satisfying suitable weak mixing conditions. In the first part, when the double dimensions of the random samples have a geometric growing pattern, a max-semistable distribution is obtained. In the second part, considering the random field sampled at double random times, a mixture distribution is established for the limiting distribution of the maximum.
LA - eng
KW - stationary random fields; max-semistable laws; random double sample size
UR - http://eudml.org/doc/297411
ER -

References

top
  1. e, Castro, L. Canto, S., Dias,, 10.1007/s10687-010-0123-5, Extremes 14 (2011), 429-449. MR2853110DOI10.1007/s10687-010-0123-5
  2. e, Castro, L. Canto, S., Dias,, G., Temido, M., 10.1016/j.jspi.2011.03.020, J. Statist. Plann. Inference 141 (2011), 3005-3020. MR2796007DOI10.1016/j.jspi.2011.03.020
  3. e, Castro, L. Canto, S., Dias,, G., Temido, M., Tail inference for a law in a max-semistable domain of attraction., Pliska Stud. Math. Bulgar. 19 (2009), 83-96. MR2547733
  4. H., Choi,, Central Limit Theory and Extremes of Random Fields., PhD Thesis, Univ. of North Carolina at Chapel Hill 2002. MR2702684
  5. H., Ferreira,, 10.1016/0378-3758(94)00082-4, J. Statist. Plann. Inference 4 (1995), 133-141. MR1342090DOI10.1016/0378-3758(94)00082-4
  6. H., Ferreira,, L., Pereira,, 10.1016/j.spl.2007.11.025, Statist. Probab. Lett. 78 (2008), 1301-1304. MR2444320DOI10.1016/j.spl.2007.11.025
  7. H., Ferreira,, L., Pereira,, 10.1016/j.jspi.2011.09.012, J. Statist. Plann. Inference 142 (2012), 773-779. MR2853583DOI10.1016/j.jspi.2011.09.012
  8. A., Freitas,, J., Hüsler,, G., Temido, M., 10.1007/s11749-011-0238-2, Test 21 (2012), 116-131. MR2912974DOI10.1007/s11749-011-0238-2
  9. J., Galambos,, The Asymptotic Theory of Extreme Order Statistics., John Wiley, New York 1978. MR0489334
  10. V., Grinevich, I., 10.1137/1138064, Theory Probab. Appl., 38 (1992), 640-650. MR1317998DOI10.1137/1138064
  11. E., Hashorva,, O., Seleznjev,, Z., Tan,, 10.1016/j.jmaa.2017.08.040, J. Math. Anal. Appl. 457 (2018), 841-867. MR3702733DOI10.1016/j.jmaa.2017.08.040
  12. R., Leadbetter, M., G., Lindgren,, H., Rootzén,, 10.1007/978-1-4612-5449-2, Springer-Verlag, Berlin 1983. Zbl0518.60021MR0691492DOI10.1007/978-1-4612-5449-2
  13. R., Leadbetter, M., H., Rootzén,, 10.1007/978-1-4612-2030-5_15, In: Stochastic Processes and Related Topics (I. Karatzas, B. S. Rajput, and M. S. Taqqu, eds.), Birkhäuser, Boston 1998, pp. 275-285. MR1652377DOI10.1007/978-1-4612-2030-5_15
  14. E., Pancheva,, Multivariate max-semistable distributions., Theory Probab. Appl. 18 (1992), 679-705. 
  15. L., Pereira,, 10.1016/j.jspi.2010.04.049, J. Statist. Plann. Inference 140 (2010), 3567-3576. MR2659878DOI10.1016/j.jspi.2010.04.049
  16. L., Pereira,, H., Ferreira,, Extremes of quasi-independent random fields and clustering of high values., In: Proc. 8th WSEAS International Conference on Applied Mathematics, WSEAS, Tenerife 2005, pp. 104-109. MR2194385
  17. L., Pereira,, H., Ferreira,, 10.1017/s0021900200002199, J. Appl. Probab. 43 (2006), 884-891. MR2274809DOI10.1017/s0021900200002199
  18. L., Pereira,, Z., Tan,, 10.1007/s10959-015-0663-3, J. Theoret. Probab. 30 (2017), 996-1013. MR3687247DOI10.1007/s10959-015-0663-3
  19. A., Rényi,, 10.1007/bf02023873, Acta Math. Acad. Sci. Hungar. 9 (1958), 215-228. MR0098161DOI10.1007/bf02023873
  20. Z., Tan,, 10.1016/j.spl.2013.05.034, Statist. Probab. Lett. 83 (2013), 2135-2141. MR3079057DOI10.1016/j.spl.2013.05.034
  21. Z., Tan,, 10.1080/03610926.2017.1383430, Comm. Statist. Theory Methods 47 (2018), 5013-5028. MR3833878DOI10.1080/03610926.2017.1383430
  22. Z., Tan,, Y., Wang,, 10.1007/s11401-013-0810-z, Chinese Ann. Math. Ser. B 35 (2014), 125-138. MR3160785DOI10.1007/s11401-013-0810-z
  23. G., Temido, M., e, Castro, L. Canto, 10.1137/tprbau000047000002000365000001, Theory Probab. Appl. 47 (2003), 365-374. MR2003209DOI10.1137/tprbau000047000002000365000001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.