On a class of variational problems with linear growth and radial symmetry

Michael Bildhauer; Martin Fuchs

Commentationes Mathematicae Universitatis Carolinae (2021)

  • Volume: 62, Issue: 3, page 325-345
  • ISSN: 0010-2628

Abstract

top
We discuss variational problems on two-dimensional domains with energy densities of linear growth and with radially symmetric data. The smoothness of generalized minimizers is established under rather weak ellipticity assumptions. Further results concern the radial symmetry of solutions as well as a precise description of their behavior near the boundary.

How to cite

top

Bildhauer, Michael, and Fuchs, Martin. "On a class of variational problems with linear growth and radial symmetry." Commentationes Mathematicae Universitatis Carolinae 62.3 (2021): 325-345. <http://eudml.org/doc/297435>.

@article{Bildhauer2021,
abstract = {We discuss variational problems on two-dimensional domains with energy densities of linear growth and with radially symmetric data. The smoothness of generalized minimizers is established under rather weak ellipticity assumptions. Further results concern the radial symmetry of solutions as well as a precise description of their behavior near the boundary.},
author = {Bildhauer, Michael, Fuchs, Martin},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {linear growth problem; symmetric solutions in 2D; existence of solutions in 2D; uniqueness solution in 2D; (non-)attainment of boundary data},
language = {eng},
number = {3},
pages = {325-345},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On a class of variational problems with linear growth and radial symmetry},
url = {http://eudml.org/doc/297435},
volume = {62},
year = {2021},
}

TY - JOUR
AU - Bildhauer, Michael
AU - Fuchs, Martin
TI - On a class of variational problems with linear growth and radial symmetry
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62
IS - 3
SP - 325
EP - 345
AB - We discuss variational problems on two-dimensional domains with energy densities of linear growth and with radially symmetric data. The smoothness of generalized minimizers is established under rather weak ellipticity assumptions. Further results concern the radial symmetry of solutions as well as a precise description of their behavior near the boundary.
LA - eng
KW - linear growth problem; symmetric solutions in 2D; existence of solutions in 2D; uniqueness solution in 2D; (non-)attainment of boundary data
UR - http://eudml.org/doc/297435
ER -

References

top
  1. Adams R. A., Sobolev Spaces, Pure and Applied Mathematics, 65, Academic Press, New York, 1975. Zbl1098.46001MR0450957
  2. Ambrosio L., Fusco N., Pallara D., Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, 224, The Clarendon Press, Oxford University Press, New York, 2000. Zbl0957.49001
  3. Beck L., Bulíček M., Málek J., Süli E., 10.1007/s00205-017-1113-4, Arch. Ration. Mech. Anal. 225 (2017), no. 2, 717–769. DOI10.1007/s00205-017-1113-4
  4. Beck L., Bulíček M., Maringová E., 10.1051/cocv/2017065, ESAIM Control Optim. Calc. Var. 24 (2018), no. 4, 1395–1403. DOI10.1051/cocv/2017065
  5. Beck L., Schmidt T., On the Dirichlet problem for variational integrals in B V , J. Reine Angew. Math. 674 (2013), 113–194. 
  6. Beck L., Schmidt T., 10.1016/j.jfa.2015.03.006, J. Funct. Anal. 268 (2015), no. 10, 3061–3107. DOI10.1016/j.jfa.2015.03.006
  7. Bildhauer M., 10.1007/b12308, Lecture Notes in Mathematics, 1818, Springer, Berlin, 2003. DOI10.1007/b12308
  8. Bildhauer M., Fuchs M., On a class of variational integrals with linear growth satisfying the condition of μ -ellipticity, Rend. Mat. Appl. 22 (2002), no. 7, 249–274. 
  9. Bildhauer M., Fuchs M., A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 385 (2010), Kraevye Zadachi Matematicheskoĭ Fiziki i Smezhnye Voprosy Teorii Funktsiĭ 41, 5–17, 234; reprinted in J. Math. Sci. (N.Y.) 178 (2011), no. 3, 235–242. 
  10. Bildhauer M., Fuchs M., Some remarks on the (non-)attainment of the boundary data for variational problems in the space BV, J. Convex Anal. 25 (2018), no. 1, 219–223. 
  11. Bulíček M., Málek J., Rajagopal K., Süli E., 10.4171/EMSS/7, EMS Surv. Math. Sci. 1 (2014), no. 2, 283–332. DOI10.4171/EMSS/7
  12. Bulíček M., Málek J., Rajagopal K. R., Walton J. R., 10.1007/s00526-015-0859-5, Calc. Var. Partial Differential Equations 54 (2015), no. 2, 2115–2147. DOI10.1007/s00526-015-0859-5
  13. Bulíček M., Málek J., Süli E., 10.1177/1081286514543601, Math. Mech. Solids 20 (2015), no. 1, 92–118. DOI10.1177/1081286514543601
  14. Bulíček M., Maringová E., Stroffolini B., Verde A., A boundary regularity result for minimizers of variational integrals with nonstandard growth, Nonlinear Anal. 177 (2018), part A, 153–168. 
  15. Buttazzo G., Giaquinta M., Hildebrandt S., One-dimensional Variational Problems, An Introduction, Oxford Lecture Series in Mathematics and Its Applications, 15, The Clarendon Press, Oxford University Press, New York, 1998. 
  16. Finn R., 10.1007/BF02806384, J. Analyse Math. 14 (1965), 139–160. DOI10.1007/BF02806384
  17. Giaquinta M., Modica G., Souček J., Functionals with linear growth in the calculus of variations. I, Comment. Math. Univ. Carolin. 20 (1979), no. 1, 143–156. 
  18. Giaquinta M., Modica G., Souček J., Functionals with linear growth in the calculus of variations. II, Comment. Math. Univ. Carolin. 20 (1979), no. 1, 157–172. 
  19. Giaquinta M., Modica G., Souček J., Cartesian Currents in the Calculus of Variations. I. Cartesian Currents, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, A Series of Modern Surveys in Mathematics, 37, Springer, Berlin, 1998. 
  20. Giaquinta M., Modica G., Souček, J., Cartesian Currents in the Calculus of Variations. II. Cartesian Currents, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, A Series of Modern Surveys in Mathematics, 38, Springer, Berlin, 1998. 
  21. Giusti E., Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, 80, Birkhäuser, Basel, 1984. Zbl0825.49059
  22. Goffman C., Serrin J., 10.1215/S0012-7094-64-03115-1, Duke Math. J. 31 (1964), 159–178. DOI10.1215/S0012-7094-64-03115-1
  23. Reshetnyak Y., Weak convergence of completely additive vector functions on a set, Sibirsk. Maz. Ž. 9 (1968), 1386–1394; English translation: Sib. Math. J. 9 (1968), 1039–1045. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.