On a class of variational problems with linear growth and radial symmetry
Michael Bildhauer; Martin Fuchs
Commentationes Mathematicae Universitatis Carolinae (2021)
- Volume: 62, Issue: 3, page 325-345
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBildhauer, Michael, and Fuchs, Martin. "On a class of variational problems with linear growth and radial symmetry." Commentationes Mathematicae Universitatis Carolinae 62.3 (2021): 325-345. <http://eudml.org/doc/297435>.
@article{Bildhauer2021,
abstract = {We discuss variational problems on two-dimensional domains with energy densities of linear growth and with radially symmetric data. The smoothness of generalized minimizers is established under rather weak ellipticity assumptions. Further results concern the radial symmetry of solutions as well as a precise description of their behavior near the boundary.},
author = {Bildhauer, Michael, Fuchs, Martin},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {linear growth problem; symmetric solutions in 2D; existence of solutions in 2D; uniqueness solution in 2D; (non-)attainment of boundary data},
language = {eng},
number = {3},
pages = {325-345},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On a class of variational problems with linear growth and radial symmetry},
url = {http://eudml.org/doc/297435},
volume = {62},
year = {2021},
}
TY - JOUR
AU - Bildhauer, Michael
AU - Fuchs, Martin
TI - On a class of variational problems with linear growth and radial symmetry
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62
IS - 3
SP - 325
EP - 345
AB - We discuss variational problems on two-dimensional domains with energy densities of linear growth and with radially symmetric data. The smoothness of generalized minimizers is established under rather weak ellipticity assumptions. Further results concern the radial symmetry of solutions as well as a precise description of their behavior near the boundary.
LA - eng
KW - linear growth problem; symmetric solutions in 2D; existence of solutions in 2D; uniqueness solution in 2D; (non-)attainment of boundary data
UR - http://eudml.org/doc/297435
ER -
References
top- Adams R. A., Sobolev Spaces, Pure and Applied Mathematics, 65, Academic Press, New York, 1975. Zbl1098.46001MR0450957
- Ambrosio L., Fusco N., Pallara D., Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, 224, The Clarendon Press, Oxford University Press, New York, 2000. Zbl0957.49001
- Beck L., Bulíček M., Málek J., Süli E., 10.1007/s00205-017-1113-4, Arch. Ration. Mech. Anal. 225 (2017), no. 2, 717–769. DOI10.1007/s00205-017-1113-4
- Beck L., Bulíček M., Maringová E., 10.1051/cocv/2017065, ESAIM Control Optim. Calc. Var. 24 (2018), no. 4, 1395–1403. DOI10.1051/cocv/2017065
- Beck L., Schmidt T., On the Dirichlet problem for variational integrals in , J. Reine Angew. Math. 674 (2013), 113–194.
- Beck L., Schmidt T., 10.1016/j.jfa.2015.03.006, J. Funct. Anal. 268 (2015), no. 10, 3061–3107. DOI10.1016/j.jfa.2015.03.006
- Bildhauer M., 10.1007/b12308, Lecture Notes in Mathematics, 1818, Springer, Berlin, 2003. DOI10.1007/b12308
- Bildhauer M., Fuchs M., On a class of variational integrals with linear growth satisfying the condition of -ellipticity, Rend. Mat. Appl. 22 (2002), no. 7, 249–274.
- Bildhauer M., Fuchs M., A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 385 (2010), Kraevye Zadachi Matematicheskoĭ Fiziki i Smezhnye Voprosy Teorii Funktsiĭ 41, 5–17, 234; reprinted in J. Math. Sci. (N.Y.) 178 (2011), no. 3, 235–242.
- Bildhauer M., Fuchs M., Some remarks on the (non-)attainment of the boundary data for variational problems in the space BV, J. Convex Anal. 25 (2018), no. 1, 219–223.
- Bulíček M., Málek J., Rajagopal K., Süli E., 10.4171/EMSS/7, EMS Surv. Math. Sci. 1 (2014), no. 2, 283–332. DOI10.4171/EMSS/7
- Bulíček M., Málek J., Rajagopal K. R., Walton J. R., 10.1007/s00526-015-0859-5, Calc. Var. Partial Differential Equations 54 (2015), no. 2, 2115–2147. DOI10.1007/s00526-015-0859-5
- Bulíček M., Málek J., Süli E., 10.1177/1081286514543601, Math. Mech. Solids 20 (2015), no. 1, 92–118. DOI10.1177/1081286514543601
- Bulíček M., Maringová E., Stroffolini B., Verde A., A boundary regularity result for minimizers of variational integrals with nonstandard growth, Nonlinear Anal. 177 (2018), part A, 153–168.
- Buttazzo G., Giaquinta M., Hildebrandt S., One-dimensional Variational Problems, An Introduction, Oxford Lecture Series in Mathematics and Its Applications, 15, The Clarendon Press, Oxford University Press, New York, 1998.
- Finn R., 10.1007/BF02806384, J. Analyse Math. 14 (1965), 139–160. DOI10.1007/BF02806384
- Giaquinta M., Modica G., Souček J., Functionals with linear growth in the calculus of variations. I, Comment. Math. Univ. Carolin. 20 (1979), no. 1, 143–156.
- Giaquinta M., Modica G., Souček J., Functionals with linear growth in the calculus of variations. II, Comment. Math. Univ. Carolin. 20 (1979), no. 1, 157–172.
- Giaquinta M., Modica G., Souček J., Cartesian Currents in the Calculus of Variations. I. Cartesian Currents, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, A Series of Modern Surveys in Mathematics, 37, Springer, Berlin, 1998.
- Giaquinta M., Modica G., Souček, J., Cartesian Currents in the Calculus of Variations. II. Cartesian Currents, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, A Series of Modern Surveys in Mathematics, 38, Springer, Berlin, 1998.
- Giusti E., Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, 80, Birkhäuser, Basel, 1984. Zbl0825.49059
- Goffman C., Serrin J., 10.1215/S0012-7094-64-03115-1, Duke Math. J. 31 (1964), 159–178. DOI10.1215/S0012-7094-64-03115-1
- Reshetnyak Y., Weak convergence of completely additive vector functions on a set, Sibirsk. Maz. Ž. 9 (1968), 1386–1394; English translation: Sib. Math. J. 9 (1968), 1039–1045.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.