Some bounds for the annihilators of local cohomology and Ext modules

Ali Fathi

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 1, page 265-284
  • ISSN: 0011-4642

Abstract

top
Let 𝔞 be an ideal of a commutative Noetherian ring R and t be a nonnegative integer. Let M and N be two finitely generated R -modules. In certain cases, we give some bounds under inclusion for the annihilators of Ext R t ( M , N ) and H 𝔞 t ( M ) in terms of minimal primary decomposition of the zero submodule of M , which are independent of the choice of minimal primary decomposition. Then, by using those bounds, we compute the annihilators of local cohomology and Ext modules in certain cases.

How to cite

top

Fathi, Ali. "Some bounds for the annihilators of local cohomology and Ext modules." Czechoslovak Mathematical Journal 72.1 (2022): 265-284. <http://eudml.org/doc/297439>.

@article{Fathi2022,
abstract = {Let $\mathfrak \{a\}$ be an ideal of a commutative Noetherian ring $R$ and $t$ be a nonnegative integer. Let $M$ and $N$ be two finitely generated $R$-modules. In certain cases, we give some bounds under inclusion for the annihilators of $\{\rm Ext\}^t_R(M, N)$ and $\{\rm H\}^t_\{\mathfrak \{a\}\}(M)$ in terms of minimal primary decomposition of the zero submodule of $M$, which are independent of the choice of minimal primary decomposition. Then, by using those bounds, we compute the annihilators of local cohomology and Ext modules in certain cases.},
author = {Fathi, Ali},
journal = {Czechoslovak Mathematical Journal},
keywords = {local cohomology module; Ext module; annihilator; primary decomposition},
language = {eng},
number = {1},
pages = {265-284},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some bounds for the annihilators of local cohomology and Ext modules},
url = {http://eudml.org/doc/297439},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Fathi, Ali
TI - Some bounds for the annihilators of local cohomology and Ext modules
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 1
SP - 265
EP - 284
AB - Let $\mathfrak {a}$ be an ideal of a commutative Noetherian ring $R$ and $t$ be a nonnegative integer. Let $M$ and $N$ be two finitely generated $R$-modules. In certain cases, we give some bounds under inclusion for the annihilators of ${\rm Ext}^t_R(M, N)$ and ${\rm H}^t_{\mathfrak {a}}(M)$ in terms of minimal primary decomposition of the zero submodule of $M$, which are independent of the choice of minimal primary decomposition. Then, by using those bounds, we compute the annihilators of local cohomology and Ext modules in certain cases.
LA - eng
KW - local cohomology module; Ext module; annihilator; primary decomposition
UR - http://eudml.org/doc/297439
ER -

References

top
  1. Atazadeh, A., Sedghi, M., Naghipour, R., 10.1007/s00013-014-0629-1, Arch. Math. 102 (2014), 225-236. (2014) Zbl1292.13004MR3181712DOI10.1007/s00013-014-0629-1
  2. Atazadeh, A., Sedghi, M., Naghipour, R., 10.4064/cm139-1-2, Colloq. Math. 139 (2015), 25-35. (2015) Zbl1314.13033MR3332732DOI10.4064/cm139-1-2
  3. Atiyah, M. F., Macdonald, I. G., Introduction to Commutative Algebra, Addison-Wesley, Reading (1969). (1969) Zbl0175.03601MR0242802
  4. Bahmanpour, K., 10.1080/00927872.2014.900687, Commun. Algebra 43 (2015), 2509-2515. (2015) Zbl1323.13003MR3344203DOI10.1080/00927872.2014.900687
  5. Bahmanpour, K., A'zami, J., Ghasemi, G., 10.1016/j.jalgebra.2012.03.026, J. Algebra 363 (2012), 8-13. (2012) Zbl1262.13027MR2925842DOI10.1016/j.jalgebra.2012.03.026
  6. Brodmann, M. P., Sharp, R. Y., 10.1017/CBO9780511629204, Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). (1998) Zbl0903.13006MR1613627DOI10.1017/CBO9780511629204
  7. Bruns, W., Herzog, J., 10.1017/CBO9780511608681, Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1998). (1998) Zbl0909.13005MR1251956DOI10.1017/CBO9780511608681
  8. Chu, L., Tang, Z., Tang, H., 10.1142/S0219498815501364, J. Algebra Appl. 14 (2015), Article ID 1550136, 7 pages. (2015) Zbl1353.13018MR3392585DOI10.1142/S0219498815501364
  9. Divaani-Aazar, K., Naghipour, R., Tousi, M., 10.1090/S0002-9939-02-06500-0, Proc. Am. Math. Soc. 130 (2002), 3537-3544. (2002) Zbl0998.13007MR1918830DOI10.1090/S0002-9939-02-06500-0
  10. Huneke, C., 10.1090/conm/436, Interactions Between Homotopy Theory and Algebra Contemporary Mathematics 436. AMS, Providence (2007), 51-99. (2007) Zbl1127.13300MR2355770DOI10.1090/conm/436
  11. Lynch, L. R., 10.1080/00927872.2010.533223, Commun. Algebra 40 (2012), 542-551. (2012) Zbl1251.13015MR2889480DOI10.1080/00927872.2010.533223
  12. Matsumura, H., 10.1017/CBO9781139171762, Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1986). (1986) Zbl0603.13001MR0879273DOI10.1017/CBO9781139171762
  13. Sharp, R. Y., 10.1007/BF01109819, Math. Z. 115 (1970), 117-139. (1970) Zbl0186.07403MR0263801DOI10.1007/BF01109819
  14. Sharp, R. Y., 10.1093/qmath/22.3.425, Q. J. Math., Oxf. II. Ser. 22 (1971), 425-434 9999DOI99999 10.1093/qmath/22.3.425 . (1971) Zbl0221.13016MR0289504DOI10.1093/qmath/22.3.425

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.