Some bounds for the annihilators of local cohomology and Ext modules
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 1, page 265-284
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFathi, Ali. "Some bounds for the annihilators of local cohomology and Ext modules." Czechoslovak Mathematical Journal 72.1 (2022): 265-284. <http://eudml.org/doc/297439>.
@article{Fathi2022,
abstract = {Let $\mathfrak \{a\}$ be an ideal of a commutative Noetherian ring $R$ and $t$ be a nonnegative integer. Let $M$ and $N$ be two finitely generated $R$-modules. In certain cases, we give some bounds under inclusion for the annihilators of $\{\rm Ext\}^t_R(M, N)$ and $\{\rm H\}^t_\{\mathfrak \{a\}\}(M)$ in terms of minimal primary decomposition of the zero submodule of $M$, which are independent of the choice of minimal primary decomposition. Then, by using those bounds, we compute the annihilators of local cohomology and Ext modules in certain cases.},
author = {Fathi, Ali},
journal = {Czechoslovak Mathematical Journal},
keywords = {local cohomology module; Ext module; annihilator; primary decomposition},
language = {eng},
number = {1},
pages = {265-284},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some bounds for the annihilators of local cohomology and Ext modules},
url = {http://eudml.org/doc/297439},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Fathi, Ali
TI - Some bounds for the annihilators of local cohomology and Ext modules
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 1
SP - 265
EP - 284
AB - Let $\mathfrak {a}$ be an ideal of a commutative Noetherian ring $R$ and $t$ be a nonnegative integer. Let $M$ and $N$ be two finitely generated $R$-modules. In certain cases, we give some bounds under inclusion for the annihilators of ${\rm Ext}^t_R(M, N)$ and ${\rm H}^t_{\mathfrak {a}}(M)$ in terms of minimal primary decomposition of the zero submodule of $M$, which are independent of the choice of minimal primary decomposition. Then, by using those bounds, we compute the annihilators of local cohomology and Ext modules in certain cases.
LA - eng
KW - local cohomology module; Ext module; annihilator; primary decomposition
UR - http://eudml.org/doc/297439
ER -
References
top- Atazadeh, A., Sedghi, M., Naghipour, R., 10.1007/s00013-014-0629-1, Arch. Math. 102 (2014), 225-236. (2014) Zbl1292.13004MR3181712DOI10.1007/s00013-014-0629-1
- Atazadeh, A., Sedghi, M., Naghipour, R., 10.4064/cm139-1-2, Colloq. Math. 139 (2015), 25-35. (2015) Zbl1314.13033MR3332732DOI10.4064/cm139-1-2
- Atiyah, M. F., Macdonald, I. G., Introduction to Commutative Algebra, Addison-Wesley, Reading (1969). (1969) Zbl0175.03601MR0242802
- Bahmanpour, K., 10.1080/00927872.2014.900687, Commun. Algebra 43 (2015), 2509-2515. (2015) Zbl1323.13003MR3344203DOI10.1080/00927872.2014.900687
- Bahmanpour, K., A'zami, J., Ghasemi, G., 10.1016/j.jalgebra.2012.03.026, J. Algebra 363 (2012), 8-13. (2012) Zbl1262.13027MR2925842DOI10.1016/j.jalgebra.2012.03.026
- Brodmann, M. P., Sharp, R. Y., 10.1017/CBO9780511629204, Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). (1998) Zbl0903.13006MR1613627DOI10.1017/CBO9780511629204
- Bruns, W., Herzog, J., 10.1017/CBO9780511608681, Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1998). (1998) Zbl0909.13005MR1251956DOI10.1017/CBO9780511608681
- Chu, L., Tang, Z., Tang, H., 10.1142/S0219498815501364, J. Algebra Appl. 14 (2015), Article ID 1550136, 7 pages. (2015) Zbl1353.13018MR3392585DOI10.1142/S0219498815501364
- Divaani-Aazar, K., Naghipour, R., Tousi, M., 10.1090/S0002-9939-02-06500-0, Proc. Am. Math. Soc. 130 (2002), 3537-3544. (2002) Zbl0998.13007MR1918830DOI10.1090/S0002-9939-02-06500-0
- Huneke, C., 10.1090/conm/436, Interactions Between Homotopy Theory and Algebra Contemporary Mathematics 436. AMS, Providence (2007), 51-99. (2007) Zbl1127.13300MR2355770DOI10.1090/conm/436
- Lynch, L. R., 10.1080/00927872.2010.533223, Commun. Algebra 40 (2012), 542-551. (2012) Zbl1251.13015MR2889480DOI10.1080/00927872.2010.533223
- Matsumura, H., 10.1017/CBO9781139171762, Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1986). (1986) Zbl0603.13001MR0879273DOI10.1017/CBO9781139171762
- Sharp, R. Y., 10.1007/BF01109819, Math. Z. 115 (1970), 117-139. (1970) Zbl0186.07403MR0263801DOI10.1007/BF01109819
- Sharp, R. Y., 10.1093/qmath/22.3.425, Q. J. Math., Oxf. II. Ser. 22 (1971), 425-434 9999DOI99999 10.1093/qmath/22.3.425 . (1971) Zbl0221.13016MR0289504DOI10.1093/qmath/22.3.425
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.