Existence results and iterative method for fully third order nonlinear integral boundary value problems

Quang A Dang; Quang Long Dang

Applications of Mathematics (2021)

  • Volume: 66, Issue: 5, page 657-672
  • ISSN: 0862-7940

Abstract

top
We consider the boundary value problem u ' ' ' ( t ) = f ( t , u ( t ) , u ' ( t ) , u ' ' ( t ) ) , 0 < t < 1 , u ( 0 ) = u ' ( 0 ) = 0 , u ( 1 ) = 0 1 g ( s ) u ( s ) d s , where f : [ 0 , 1 ] × 3 + , g : [ 0 , 1 ] + are continuous functions. The case when f = f ( u ( t ) ) was studied in 2018 by Guendouz et al. Using the fixed-point theory on cones they established the existence of positive solutions. Here, by the method developed by ourselves very recently, we establish the existence, uniqueness and positivity of the solution under easily verified conditions and propose an iterative method for finding the solution. Some examples demonstrate the validity of the obtained theoretical results and the efficiency of the iterative method.

How to cite

top

Dang, Quang A, and Dang, Quang Long. "Existence results and iterative method for fully third order nonlinear integral boundary value problems." Applications of Mathematics 66.5 (2021): 657-672. <http://eudml.org/doc/297448>.

@article{Dang2021,
abstract = {We consider the boundary value problem \begin\{gather\} u^\{\prime \prime \prime \}(t)=f(t,u(t),u^\{\prime \}(t),u^\{\prime \prime \}(t)), \quad 0<t<1, \nonumber \\ u(0)=u^\{\prime \}(0)=0, \quad u(1)= \int \_0^1 g(s)u(s) \mathrm \{d\} s,\nonumber \end\{gather\} where $f\colon [0, 1] \times \mathbb \{R\}^3 \rightarrow \mathbb \{R\}^+$, $g\colon [0, 1] \rightarrow \mathbb \{R\}^+$ are continuous functions. The case when $f=f(u(t))$ was studied in 2018 by Guendouz et al. Using the fixed-point theory on cones they established the existence of positive solutions. Here, by the method developed by ourselves very recently, we establish the existence, uniqueness and positivity of the solution under easily verified conditions and propose an iterative method for finding the solution. Some examples demonstrate the validity of the obtained theoretical results and the efficiency of the iterative method.},
author = {Dang, Quang A, Dang, Quang Long},
journal = {Applications of Mathematics},
keywords = {fully third order nonlinear differential equation; integral boundary condition; positive solution; iterative method},
language = {eng},
number = {5},
pages = {657-672},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence results and iterative method for fully third order nonlinear integral boundary value problems},
url = {http://eudml.org/doc/297448},
volume = {66},
year = {2021},
}

TY - JOUR
AU - Dang, Quang A
AU - Dang, Quang Long
TI - Existence results and iterative method for fully third order nonlinear integral boundary value problems
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 5
SP - 657
EP - 672
AB - We consider the boundary value problem \begin{gather} u^{\prime \prime \prime }(t)=f(t,u(t),u^{\prime }(t),u^{\prime \prime }(t)), \quad 0<t<1, \nonumber \\ u(0)=u^{\prime }(0)=0, \quad u(1)= \int _0^1 g(s)u(s) \mathrm {d} s,\nonumber \end{gather} where $f\colon [0, 1] \times \mathbb {R}^3 \rightarrow \mathbb {R}^+$, $g\colon [0, 1] \rightarrow \mathbb {R}^+$ are continuous functions. The case when $f=f(u(t))$ was studied in 2018 by Guendouz et al. Using the fixed-point theory on cones they established the existence of positive solutions. Here, by the method developed by ourselves very recently, we establish the existence, uniqueness and positivity of the solution under easily verified conditions and propose an iterative method for finding the solution. Some examples demonstrate the validity of the obtained theoretical results and the efficiency of the iterative method.
LA - eng
KW - fully third order nonlinear differential equation; integral boundary condition; positive solution; iterative method
UR - http://eudml.org/doc/297448
ER -

References

top
  1. Benaicha, S., Haddouchi, F., 10.1515/awutm-2016-0005, An. Univ. Vest Timiş., Ser. Mat.-Inform. 54 (2016), 73-86. (2016) MR3552473DOI10.1515/awutm-2016-0005
  2. Benchohra, M., Nieto, J. J., Ouahab, A., 10.1155/2011/260309, Bound. Value Probl. 2011 (2011), Article ID 260309, 9 pages. (2011) Zbl1208.34015MR2734188DOI10.1155/2011/260309
  3. Boucherif, A., 10.3934/proc.2007.2007.155, Discrete and Continuous Dynamical Systems 2007, Suppl AIMS, Springfield (2007), 155-159. (2007) Zbl1163.34315MR2409209DOI10.3934/proc.2007.2007.155
  4. Boucherif, A., 10.1016/j.na.2007.12.007, Nonlinear Anal., Theory Methods Appl., Ser. A 70 (2009), 364-371. (2009) Zbl1169.34310MR2468243DOI10.1016/j.na.2007.12.007
  5. Boucherif, A., Bouguima, S. M., Al-Malki, N., Benbouziane, Z., 10.1016/j.na.2009.02.055, Nonlinear Anal., Theory Methods Appl., Ser. A, e-Suppl. 71 (2009), e1736--e1743. (2009) Zbl1238.34031MR2671952DOI10.1016/j.na.2009.02.055
  6. Dang, Q. A, Mixed boundary-domain operator in approximate solution of biharmonic type equation, Vietnam J. Math. 26 (1998), 243-252. (1998) Zbl0939.35061MR1684351
  7. Dang, Q. A, Dang, Q. L., 10.1007/s40314-018-0643-1, Comput. Appl. Math. 37 (2018), 16-26. (2018) Zbl1438.65152MR3896686DOI10.1007/s40314-018-0643-1
  8. Dang, Q. A, Dang, Q. L., Ngo, T. K. Q., 10.1007/s11075-017-0264-6, Numer. Algorithms 76 (2017), 427-439. (2017) Zbl1378.65149MR3704876DOI10.1007/s11075-017-0264-6
  9. Dang, Q. A, Ngo, T. K. Q., 10.1016/j.nonrwa.2017.01.001, Nonlinear Anal., Real World Appl. 36 (2017), 56-68. (2017) Zbl1362.34036MR3621230DOI10.1016/j.nonrwa.2017.01.001
  10. Dang, Q. A, Ngo, T. K. Q., 10.5269/bspm.v36i4.33584, Bol. Soc. Parana Mat. (3) 36 (2018), 209-223. (2018) Zbl1424.34083MR3744750DOI10.5269/bspm.v36i4.33584
  11. Denche, M., Kourta, A., 10.1080/00036810500287255, Appl. Anal. 84 (2005), 1247-1266. (2005) Zbl1084.47036MR2178770DOI10.1080/00036810500287255
  12. Guendouz, C., Haddouchi, F., Benaicha, S., Existence of positive solutions for a nonlinear third-order integral boundary value problem, Ann. Acad. Rom. Sci., Math. Appl. 10 (2018), 314-328. (2018) Zbl1438.34095MR3933051
  13. Guo, Y., Liu, Y., Liang, Y., 10.1186/1687-2770-2012-34, Bound. Value Probl. 2012 (2012), Articles ID 34, 9 pages. (2012) Zbl1279.34040MR2944543DOI10.1186/1687-2770-2012-34
  14. Guo, Y., Yang, F., 10.1155/2013/721909, J. Appl. Math. 2013 (2013), Article ID 721909, 6 pages. (2013) Zbl1271.34028MR3074314DOI10.1155/2013/721909
  15. Jankowski, T., 10.1016/j.na.2010.04.055, Nonlinear Anal., Theory Methods Appl., Ser. A 73 (2010), 1289-1299. (2010) Zbl1200.34072MR2661226DOI10.1016/j.na.2010.04.055
  16. Lepin, A. Y., Lepin, L. A., 10.1134/S0012266115120149, Differ. Equ. 51 (2015), 1666-1668 translation from Differ. Uravn. 51 2015 1686-1688. (2015) Zbl1337.34026MR3453243DOI10.1134/S0012266115120149
  17. Li, H., Wang, L., Pei, M., 10.1155/2013/782363, J. Appl. Math. 2013 (2013), Article ID 782363, 7 pages. (2013) Zbl1270.34033MR3035180DOI10.1155/2013/782363
  18. Lv, X., Wang, L., Pei, M., 10.1186/s13661-015-0441-2, Bound. Value Probl. 2015 (2015), Article ID 172, 12 pages. (2015) Zbl1341.34033MR3400645DOI10.1186/s13661-015-0441-2
  19. Sun, J.-P., Li, H.-B., doi.org/10.1155/2010/874959, Bound. Value Probl. 2010 (2010), Article ID 874959, 11 pages. (2010) Zbl1208.34017MR2739196DOIdoi.org/10.1155/2010/874959
  20. Zhang, X., Ge, W., 10.1016/j.camwa.2009.04.002, Comput. Math. Appl. 58 (2009), 203-215. (2009) Zbl1189.34035MR2535787DOI10.1016/j.camwa.2009.04.002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.