Local well-posedness for a two-phase model with magnetic field and vacuum

Xiuhui Yang

Applications of Mathematics (2021)

  • Volume: 66, Issue: 4, page 619-639
  • ISSN: 0862-7940

Abstract

top
This paper proves the local well-posedness of strong solutions to a two-phase model with magnetic field and vacuum in a bounded domain Ω 3 without the standard compatibility conditions.

How to cite

top

Yang, Xiuhui. "Local well-posedness for a two-phase model with magnetic field and vacuum." Applications of Mathematics 66.4 (2021): 619-639. <http://eudml.org/doc/297455>.

@article{Yang2021,
abstract = {This paper proves the local well-posedness of strong solutions to a two-phase model with magnetic field and vacuum in a bounded domain $\Omega \subset \mathbb \{R\}^3$ without the standard compatibility conditions.},
author = {Yang, Xiuhui},
journal = {Applications of Mathematics},
keywords = {two-phase flow; magnetic field; vacuum; local well-posedness},
language = {eng},
number = {4},
pages = {619-639},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Local well-posedness for a two-phase model with magnetic field and vacuum},
url = {http://eudml.org/doc/297455},
volume = {66},
year = {2021},
}

TY - JOUR
AU - Yang, Xiuhui
TI - Local well-posedness for a two-phase model with magnetic field and vacuum
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 4
SP - 619
EP - 639
AB - This paper proves the local well-posedness of strong solutions to a two-phase model with magnetic field and vacuum in a bounded domain $\Omega \subset \mathbb {R}^3$ without the standard compatibility conditions.
LA - eng
KW - two-phase flow; magnetic field; vacuum; local well-posedness
UR - http://eudml.org/doc/297455
ER -

References

top
  1. Berselli, L. C., Spirito, S., 10.1007/s00220-012-1581-1, Commun. Math. Phys. 316 (2012), 171-198. (2012) Zbl1254.35175MR2989457DOI10.1007/s00220-012-1581-1
  2. Carrillo, J. A., Goudon, T., 10.1080/03605300500394389, Commun. Partial Differ. Equations 31 (2006), 1349-1379. (2006) Zbl1105.35088MR2254618DOI10.1080/03605300500394389
  3. Cho, Y., Choe, H. J., Kim, H., 10.1016/j.matpur.2003.11.004, J. Math. Pures Appl., IX. Sér. 83 (2004), 243-275. (2004) Zbl1080.35066MR2038120DOI10.1016/j.matpur.2003.11.004
  4. Choe, H. J., Kim, H., 10.1016/S0022-0396(03)00015-9, J. Differ. Equations 190 (2003), 504-523. (2003) Zbl1022.35037MR1970039DOI10.1016/S0022-0396(03)00015-9
  5. Enomoto, Y., Shibata, Y., 10.1619/fesi.56.441, Funkc. Ekvacioj, Ser. Int. 56 (2013), 441-505. (2013) Zbl1296.35118MR3157151DOI10.1619/fesi.56.441
  6. Fan, J., Yu, W., 10.1016/j.nonrwa.2007.10.001, Nonlinear Anal., Real World Appl. 10 (2009), 392-409. (2009) Zbl1154.76389MR2451719DOI10.1016/j.nonrwa.2007.10.001
  7. Gong, H., Li, J., Liu, X.-G., Zhang, X., 10.4310/CMS.2020.v18.n7.a4, Commun. Math. Sci. 18 (2020), 1891-1909. (2020) Zbl07342276MR4195559DOI10.4310/CMS.2020.v18.n7.a4
  8. Hong, G., Hou, X., Peng, H., Zhu, C., 10.1137/16M1100447, SIAM J. Math. Anal. 49 (2017), 2409-2441. (2017) Zbl1372.35164MR3668595DOI10.1137/16M1100447
  9. Huang, X., 10.1007/s11425-019-9755-3, (to appear) in Sci. China, Math. DOI10.1007/s11425-019-9755-3
  10. Métivier, G., Schochet, S., 10.1007/PL00004241, Arch. Ration. Mech. Anal. 158 (2001), 61-90. (2001) Zbl0974.76072MR1834114DOI10.1007/PL00004241
  11. Nowakowski, B., Ströhmer, G., Zajączkowski, W. M., 10.1007/s00021-017-0353-2, J. Math. Fluid Mech. 20 (2018), 1013-1034. (2018) Zbl1401.35253MR3841971DOI10.1007/s00021-017-0353-2
  12. Nowakowski, B., Zajączkowski, W. M., 10.1007/s00033-016-0734-z, Z. Angew. Math. Phys. 67 (2016), Article ID 142, 22 pages. (2016) Zbl1358.35128MR3566925DOI10.1007/s00033-016-0734-z
  13. Piasecki, T., Shibata, Y., Zatorska, E., 10.1137/17M1151134, SIAM J. Math. Anal. 51 (2019), 2793-2849. (2019) Zbl1419.76541MR3977107DOI10.1137/17M1151134
  14. Vasseur, A., Wen, H., Yu, C., 10.1016/j.matpur.2018.06.019, J. Math. Pures Appl. (9) 125 (2019), 247-282. (2019) Zbl1450.76033MR3944205DOI10.1016/j.matpur.2018.06.019
  15. Wen, H., Zhu, L., 10.1016/j.jde.2017.10.027, J. Differ. Equations 264 (2018), 2377-2406. (2018) Zbl1432.76298MR3721432DOI10.1016/j.jde.2017.10.027
  16. Zhu, S., 10.1137/14095265X, SIAM J. Math. Anal. 47 (2015), 2722-2753. (2015) Zbl1325.35176MR3369066DOI10.1137/14095265X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.