A continuous mapping theorem for the argmin-set functional with applications to convex stochastic processes
Kybernetika (2021)
- Volume: 57, Issue: 3, page 426-445
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topFerger, Dietmar. "A continuous mapping theorem for the argmin-set functional with applications to convex stochastic processes." Kybernetika 57.3 (2021): 426-445. <http://eudml.org/doc/297471>.
@article{Ferger2021,
abstract = {For lower-semicontinuous and convex stochastic processes $Z_n$ and nonnegative random variables $\epsilon _n$ we investigate the pertaining random sets $A(Z_n,\epsilon _n)$ of all $\epsilon _n$-approximating minimizers of $Z_n$. It is shown that, if the finite dimensional distributions of the $Z_n$ converge to some $Z$ and if the $\epsilon _n$ converge in probability to some constant $c$, then the $A(Z_n,\epsilon _n)$ converge in distribution to $A(Z,c)$ in the hyperspace of Vietoris. As a simple corollary we obtain an extension of several argmin-theorems in the literature. In particular, in contrast to these argmin-theorems we do not require that the limit process has a unique minimizing point. In the non-unique case the limit-distribution is replaced by a Choquet-capacity.},
author = {Ferger, Dietmar},
journal = {Kybernetika},
keywords = {convex stochastic processes; sets of approximating minimizers; weak convergence; Vietoris hyperspace topologies; Choquet-capacity},
language = {eng},
number = {3},
pages = {426-445},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A continuous mapping theorem for the argmin-set functional with applications to convex stochastic processes},
url = {http://eudml.org/doc/297471},
volume = {57},
year = {2021},
}
TY - JOUR
AU - Ferger, Dietmar
TI - A continuous mapping theorem for the argmin-set functional with applications to convex stochastic processes
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
VL - 57
IS - 3
SP - 426
EP - 445
AB - For lower-semicontinuous and convex stochastic processes $Z_n$ and nonnegative random variables $\epsilon _n$ we investigate the pertaining random sets $A(Z_n,\epsilon _n)$ of all $\epsilon _n$-approximating minimizers of $Z_n$. It is shown that, if the finite dimensional distributions of the $Z_n$ converge to some $Z$ and if the $\epsilon _n$ converge in probability to some constant $c$, then the $A(Z_n,\epsilon _n)$ converge in distribution to $A(Z,c)$ in the hyperspace of Vietoris. As a simple corollary we obtain an extension of several argmin-theorems in the literature. In particular, in contrast to these argmin-theorems we do not require that the limit process has a unique minimizing point. In the non-unique case the limit-distribution is replaced by a Choquet-capacity.
LA - eng
KW - convex stochastic processes; sets of approximating minimizers; weak convergence; Vietoris hyperspace topologies; Choquet-capacity
UR - http://eudml.org/doc/297471
ER -
References
top- Attouch, H., Variational Convergence for Functions and Operators., Applicable Mathematics Series, Pitmann, London 1984.
- Bertsekas, D. P., Convex Analysis and Optimization., Athena Scientific, Belmont, Massachusetts 2003.
- Chernozhukov, V., , Ann. Statist. 33 (2005), 806-839. DOI
- Davis, R. A., Knight, K., Liu, J., , Stochastic Process. Appl. 40 (1992), 145-180. DOI
- Ferger, D., , Turkish J. Math. 42 (2018), 1747-1764. DOI
- Gaenssler, P., Stute, W., Wahrscheinlichkeitstheorie., Springer-Verlag, Berlin, Heidelberg, New York 1977. Zbl0357.60001
- Geyer, C. J., On the asymptotics of convex stochastic optimization., Unpublished manuscript (1996).
- Haberman, S. J., , Ann. Statist. 17 (1989), 1631-1661. DOI
- Hjort, N. L., Pollard, D., , Preprint, Dept. of Statistics, Yale University (1993). DOI
- Hoffmann-Jørgensen, J., Convergence in law of random elements and random sets., In: High Dimensional Probability (E. Eberlein, M. Hahn and M. Talagrand, eds.), Birkhäuser Verlag, Basel 1998, pp. 151-189.
- Kallenberg, O., Foundations of Modern Probability., Springer-Verlag, New York 1997. Zbl0996.60001
- Knight, K., , Ann. Statist. 26 (1998), 755-770. DOI
- Knight, K., , Extremes 4 (2001), 87-103. DOI
- Knight, K., , In: Statistical Data Analysis Based on the -Norm and Related Methods (Y. Dodge, ed.), Series Statistics for Industry and Technology, Birkhäuser Verlag, Basel pp. 47-65. DOI
- Liese, F., Mieschke, K-J., , Springer Science and Business Media, LLC, New York 2008. DOI
- Molchanov, I., , Springer-Verlag, New York 2017. DOI
- Pflug, G. Ch., Asymptotic dominance and confidence regions for solutions of stochastic programs., Czechoslovak J. Oper. Res. 1 (1992), 21-30.
- Pflug, G. Ch., , Math. Oper. Res. 20 (1995), 769-789. DOI
- Rockefellar, R. T., Wets, R. J.-B., Variational Analysis., Springer-Verlag, Berlin, Heidelberg 1998.
- Smirnov, N. V., Limiting distributions for the terms of a variational series., Amer. Math. Soc. Trans. 67 (1952), 82-143.
- Topsøe, F., Topology and Measure. Lecture Notes in Mathematics., Springer-Verlag, Berlin, Heidelberg, New York 1970.
- Wagener, J., Dette, H., , Math. Methods Statist. 21 (2012), 109-126. DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.