Pre-derivations and description of non-strongly nilpotent filiform Leibniz algebras

K.K. Abdurasulov; A.Kh. Khudoyberdiyev; M. Ladra; A.M. Sattarov

Communications in Mathematics (2021)

  • Volume: 29, Issue: 2, page 187-213
  • ISSN: 1804-1388

Abstract

top
In this paper we give the description of some non-strongly nilpotent Leibniz algebras. We pay our attention to the subclass of nilpotent Leibniz algebras, which is called filiform. Note that the set of filiform Leibniz algebras of fixed dimension can be decomposed into three disjoint families. We describe the pre-derivations of filiform Leibniz algebras for the first and second families and determine those algebras in the first two classes of filiform Leibniz algebras that are non-strongly nilpotent.

How to cite

top

Abdurasulov, K.K., et al. "Pre-derivations and description of non-strongly nilpotent filiform Leibniz algebras." Communications in Mathematics 29.2 (2021): 187-213. <http://eudml.org/doc/297473>.

@article{Abdurasulov2021,
abstract = {In this paper we give the description of some non-strongly nilpotent Leibniz algebras. We pay our attention to the subclass of nilpotent Leibniz algebras, which is called filiform. Note that the set of filiform Leibniz algebras of fixed dimension can be decomposed into three disjoint families. We describe the pre-derivations of filiform Leibniz algebras for the first and second families and determine those algebras in the first two classes of filiform Leibniz algebras that are non-strongly nilpotent.},
author = {Abdurasulov, K.K., Khudoyberdiyev, A.Kh., Ladra, M., Sattarov, A.M.},
journal = {Communications in Mathematics},
keywords = {Lie algebra; Leibniz algebra; derivation; pre-derivation; nilpotency; characteristically nilpotent algebra; strongly nilpotent algebra},
language = {eng},
number = {2},
pages = {187-213},
publisher = {University of Ostrava},
title = {Pre-derivations and description of non-strongly nilpotent filiform Leibniz algebras},
url = {http://eudml.org/doc/297473},
volume = {29},
year = {2021},
}

TY - JOUR
AU - Abdurasulov, K.K.
AU - Khudoyberdiyev, A.Kh.
AU - Ladra, M.
AU - Sattarov, A.M.
TI - Pre-derivations and description of non-strongly nilpotent filiform Leibniz algebras
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
VL - 29
IS - 2
SP - 187
EP - 213
AB - In this paper we give the description of some non-strongly nilpotent Leibniz algebras. We pay our attention to the subclass of nilpotent Leibniz algebras, which is called filiform. Note that the set of filiform Leibniz algebras of fixed dimension can be decomposed into three disjoint families. We describe the pre-derivations of filiform Leibniz algebras for the first and second families and determine those algebras in the first two classes of filiform Leibniz algebras that are non-strongly nilpotent.
LA - eng
KW - Lie algebra; Leibniz algebra; derivation; pre-derivation; nilpotency; characteristically nilpotent algebra; strongly nilpotent algebra
UR - http://eudml.org/doc/297473
ER -

References

top
  1. Albeverio, S., Ayupov, Sh.A., Omirov, B.A., Khudoyberdiyev, A.Kh., 10.1016/j.jalgebra.2007.12.014, J. Algebra, 319, 6, 2008, 2471-2488, (2008) DOI10.1016/j.jalgebra.2007.12.014
  2. Ancochea, J.M., Campoamor, R., Characteristically Nilpotent Lie Algebras: A Survey, Extracta Math., 2, 2001, 153-210, (2001) 
  3. Ayupov, Sh.A., Omirov, B.A., 10.1023/A:1004829123402, Siberian Math. J., 42, 1, 2001, 15-24, (2001) DOI10.1023/A:1004829123402
  4. Bajo, I., Lie algebras admitting non-singular prederivations, Indag. Mathem., 8, 4, 1997, 433-437, (1997) 
  5. Burde, D., 10.1515/FORUM.2006.038, Forum Math., 18, 5, 2006, 769-787, (2006) Zbl1206.17009DOI10.1515/FORUM.2006.038
  6. Burde, D., 10.1081/AGB-120004482, Comm. Algebra, 30, 7, 2002, 3157-3175, (2002) DOI10.1081/AGB-120004482
  7. Castro-Jiménez, F.J., Núñez Valdés, J., On characteristically nilpotent filiform Lie algebras of dimension 9 , Comm. Algebra, 23, 8, 1995, 3059-3071, (1995) 
  8. Dixmier, J., Lister, W.G., Derivations of nilpotent Lie algebras, Proc. Amer. Math. Soc., 8, 1957, 155-158, (1957) 
  9. Fialowski, A., Khudoyberdiyev, A.Kh., B.A.Omirov, 10.1007/s10468-012-9373-z, Algebr. Represent. Theory, 16, 5, 2013, 1489-1505, (2013) DOI10.1007/s10468-012-9373-z
  10. Gómez, J.R., Jiménez-Merchán, A., Khakimdjanov, Y., Low-dimensional filiform Lie algebras, J. Pure Appl. Algebra, 130, 2, 1998, 133-158, (1998) 
  11. Gómez, J.R., Omirov, B.A., 10.1142/S1005386715000668, Algebra Colloquium, 22, 1, 2015, 757-774, (2015) DOI10.1142/S1005386715000668
  12. Hilton, P., Pedersen, J., 10.1007/BF03024089, Math. Intelligencer, 13, 2, 1991, 64-75, (1991) DOI10.1007/BF03024089
  13. Jacobson, N., 10.1090/S0002-9939-1955-0068532-9, Proc. Amer. Math. Soc., 6, 1955, 281-283, (1955) DOI10.1090/S0002-9939-1955-0068532-9
  14. Kaygorodov, I., Popov, Yu., 10.1070/IM2014v078n05ABEH002713, Izv. Math., 78, 5, 2014, 922-935, (2014) DOI10.1070/IM2014v078n05ABEH002713
  15. Kaygorodov, I., Popov, Yu., 10.1016/j.jalgebra.2016.02.016, J. Algebra, 456, 2016, 323-347, (2016) DOI10.1016/j.jalgebra.2016.02.016
  16. Khakimdzhanov, Yu.B., 10.1070/SM1991v070n01ABEH001378, Math. USSR, Sb., 70, 1, 1991, 65-78, (1991) DOI10.1070/SM1991v070n01ABEH001378
  17. Khakimdzhanov, Yu.B., Variété des lois d'algèbres de Lie nilpotentes, Geom. Dedicata, 40, 3, 1991, 269-295, (1991) 
  18. Khudoyberdiyev, A.Kh., Ladra, M., Omirov, B.A., 10.1007/s10468-013-9426-y, Algebr. Represent. Theory, 17, 3, 2014, 945-969, (2014) DOI10.1007/s10468-013-9426-y
  19. Leger, G., Tôgô, S., 10.1215/S0012-7094-59-02660-2, Duke Math. J., 26, 4, 1959, 623-628, (1959) DOI10.1215/S0012-7094-59-02660-2
  20. Ladra, M., Rikhsiboev, I.M., Turdibaev, R.M., 10.1007/s11253-016-1277-3, Ukr. Math. J., 68, 7, 2016, 1062-1076, (2016) DOI10.1007/s11253-016-1277-3
  21. Loday, J.-L., Une version non commutative des algèbres de Leibniz, Enseign. Math., 39, 3-4, 1993, 269-293, (1993) 
  22. Moens, W.A., 10.1080/00927872.2012.659101, Comm. Algebra, 41, 2013, 2427-2440, (2013) DOI10.1080/00927872.2012.659101
  23. Muller, D., 10.1007/BF00147471, Geom. Dedicata, 29, 1, 1989, 65-96, (1989) DOI10.1007/BF00147471
  24. Omirov, B.A., 10.1007/s11006-005-0068-1, Math. Notes, 77, 5--6, 2005, 677-685, (2005) DOI10.1007/s11006-005-0068-1
  25. Omirov, B.A., Rakhimov, I.S., 10.1017/S000497270900001X, Bull. Aust. Math. Soc., 79, 3, 2009, 391-404, (2009) DOI10.1017/S000497270900001X
  26. Rakhimov, I.S., Sozan, J., Description of nine dimensional complex filiform Leibniz algebras arising from naturally graded non Lie filiform Leibniz algebras, Int. J. Algebra, 3, 17-20, 2009, 969-980, (2009) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.