On the continuity of the elements of the Ellis semigroup and other properties

Salvador García-Ferreira; Yackelin Rodríguez-López; Carlos Uzcátegui

Commentationes Mathematicae Universitatis Carolinae (2021)

  • Issue: 2, page 225-241
  • ISSN: 0010-2628

Abstract

top
We consider discrete dynamical systems whose phase spaces are compact metrizable countable spaces. In the first part of the article, we study some properties that guarantee the continuity of all functions of the corresponding Ellis semigroup. For instance, if every accumulation point of X is fixed, we give a necessary and sufficient condition on a point a X ' in order that all functions of the Ellis semigroup E ( X , f ) be continuous at the given point a . In the second part, we consider transitive dynamical systems. We show that if ( X , f ) is a transitive dynamical system and either every function of E ( X , f ) is continuous or | ω f ( x ) | = 1 for each accumulation point x of X , then E ( X , f ) is homeomorphic to X . Several examples are given to illustrate our results.

How to cite

top

García-Ferreira, Salvador, Rodríguez-López, Yackelin, and Uzcátegui, Carlos. "On the continuity of the elements of the Ellis semigroup and other properties." Commentationes Mathematicae Universitatis Carolinae (2021): 225-241. <http://eudml.org/doc/297476>.

@article{García2021,
abstract = {We consider discrete dynamical systems whose phase spaces are compact metrizable countable spaces. In the first part of the article, we study some properties that guarantee the continuity of all functions of the corresponding Ellis semigroup. For instance, if every accumulation point of $X$ is fixed, we give a necessary and sufficient condition on a point $a\in X^\{\prime \}$ in order that all functions of the Ellis semigroup $E(X,f)$ be continuous at the given point $a$. In the second part, we consider transitive dynamical systems. We show that if $(X,f)$ is a transitive dynamical system and either every function of $E(X,f)$ is continuous or $|\omega _f(x)|=1$ for each accumulation point $x$ of $X$, then $E(X,f)$ is homeomorphic to $X$. Several examples are given to illustrate our results.},
author = {García-Ferreira, Salvador, Rodríguez-López, Yackelin, Uzcátegui, Carlos},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {discrete dynamical system; Ellis semigroup; $p$-iterate; $p$-limit point; ultrafilter; compact metric countable space},
language = {eng},
number = {2},
pages = {225-241},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the continuity of the elements of the Ellis semigroup and other properties},
url = {http://eudml.org/doc/297476},
year = {2021},
}

TY - JOUR
AU - García-Ferreira, Salvador
AU - Rodríguez-López, Yackelin
AU - Uzcátegui, Carlos
TI - On the continuity of the elements of the Ellis semigroup and other properties
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
IS - 2
SP - 225
EP - 241
AB - We consider discrete dynamical systems whose phase spaces are compact metrizable countable spaces. In the first part of the article, we study some properties that guarantee the continuity of all functions of the corresponding Ellis semigroup. For instance, if every accumulation point of $X$ is fixed, we give a necessary and sufficient condition on a point $a\in X^{\prime }$ in order that all functions of the Ellis semigroup $E(X,f)$ be continuous at the given point $a$. In the second part, we consider transitive dynamical systems. We show that if $(X,f)$ is a transitive dynamical system and either every function of $E(X,f)$ is continuous or $|\omega _f(x)|=1$ for each accumulation point $x$ of $X$, then $E(X,f)$ is homeomorphic to $X$. Several examples are given to illustrate our results.
LA - eng
KW - discrete dynamical system; Ellis semigroup; $p$-iterate; $p$-limit point; ultrafilter; compact metric countable space
UR - http://eudml.org/doc/297476
ER -

References

top
  1. Akin E., Glasner E., WAP systems and labeled subshifts, Mem. Amer. Math. Soc. 262 (2019), no. 1265, v+116 pages. MR4044461
  2. Blass A., Ultrafilters: where topological dynamics = algebra = combinatorics, Topology Proc. 18 (1993), 33–56. MR1305122
  3. Bernstein A. R., 10.4064/fm-66-2-185-193, Fund. Math. 66 (1969/70), 185–193. Zbl0198.55401MR0251697DOI10.4064/fm-66-2-185-193
  4. Ellis R., 10.1090/S0002-9947-1960-0123636-3, Trans. Amer. Math. Soc. 94 (1960), 272–281. MR0123636DOI10.1090/S0002-9947-1960-0123636-3
  5. Ellis R., Nerurkar M., 10.1090/S0002-9947-1989-0930084-3, Trans. Amer. Math. Soc. 313 (1989), no. 1, 103–119. MR0930084DOI10.1090/S0002-9947-1989-0930084-3
  6. Furstenberg H., Recurrence in Ergodic Theory and Combinatorial Number Theory, M. B. Porter Lectures, Princeton University Press, Princeton, 1981. Zbl0459.28023MR0603625
  7. García-Ferreira S., 10.1016/j.topol.2011.06.062, Topology Appl. 159 (2012), no. 7, 1719–1733. MR2904060DOI10.1016/j.topol.2011.06.062
  8. García-Ferreira S., Rodriguez-López Y., Uzcátegui C., 10.1016/j.topol.2014.11.007, Topology Appl. 180 (2015), 100–110. MR3293269DOI10.1016/j.topol.2014.11.007
  9. García-Ferreira S., Rodríguez-López Y., Uzcátegui C., 10.1007/s00233-017-9888-z, Semigroup Forum 97 (2018), no. 1, 162–176. MR3818356DOI10.1007/s00233-017-9888-z
  10. García-Ferreira S., Sanchis M., Ultrafilter-limit points in metric dynamical systems, Comment. Math. Univ. Carolin. 48 (2007), no. 3, 465–485. MR2374128
  11. Glasner E., 10.1016/j.topol.2007.03.009, Topology Appl. 154 (2007), no. 11, 2344–2363. MR2328017DOI10.1016/j.topol.2007.03.009
  12. Hindman N., 10.1007/BFb0097334, Set Theory and Its Applications, Lecture Notes in Mathematics, 1401, Springer, Berlin, 1989, pages 97–118. MR1031768DOI10.1007/BFb0097334
  13. Mazurkiewicz S., Sierpiński W., 10.4064/fm-1-1-17-27, Fundamenta Mathematicae 1 (1920), 17–27 (Spanish). DOI10.4064/fm-1-1-17-27
  14. Szuca P., -limit points in dynamical systems defined on the interval, Cent. Eur. J. Math. 11 (2013), no. 1, 170–176. MR2988790

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.