G-tridiagonal majorization on
Ahmad Mohammadhasani; Yamin Sayyari; Mahdi Sabzvari
Communications in Mathematics (2021)
- Volume: 29, Issue: 3, page 395-405
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topMohammadhasani, Ahmad, Sayyari, Yamin, and Sabzvari, Mahdi. "G-tridiagonal majorization on $\textbf {M}_{n,m}$." Communications in Mathematics 29.3 (2021): 395-405. <http://eudml.org/doc/297478>.
@article{Mohammadhasani2021,
abstract = {For $X,Y\in \textbf \{M\}_\{n,m\}$, it is said that $X$ is g-tridiagonal majorized by $Y$ (and it is denoted by $X\prec _\{gt\}Y$) if there exists a tridiagonal g-doubly stochastic matrix $A$ such that $X=AY$. In this paper, the linear preservers and strong linear preservers of $\prec _\{gt\}$ are characterized on $\textbf \{M\}_\{n,m\}$.},
author = {Mohammadhasani, Ahmad, Sayyari, Yamin, Sabzvari, Mahdi},
journal = {Communications in Mathematics},
keywords = {G-doubly stochastic matrix; gt-majorization; (strong) linear preserver; tridiagonal matrices},
language = {eng},
number = {3},
pages = {395-405},
publisher = {University of Ostrava},
title = {G-tridiagonal majorization on $\textbf \{M\}_\{n,m\}$},
url = {http://eudml.org/doc/297478},
volume = {29},
year = {2021},
}
TY - JOUR
AU - Mohammadhasani, Ahmad
AU - Sayyari, Yamin
AU - Sabzvari, Mahdi
TI - G-tridiagonal majorization on $\textbf {M}_{n,m}$
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
VL - 29
IS - 3
SP - 395
EP - 405
AB - For $X,Y\in \textbf {M}_{n,m}$, it is said that $X$ is g-tridiagonal majorized by $Y$ (and it is denoted by $X\prec _{gt}Y$) if there exists a tridiagonal g-doubly stochastic matrix $A$ such that $X=AY$. In this paper, the linear preservers and strong linear preservers of $\prec _{gt}$ are characterized on $\textbf {M}_{n,m}$.
LA - eng
KW - G-doubly stochastic matrix; gt-majorization; (strong) linear preserver; tridiagonal matrices
UR - http://eudml.org/doc/297478
ER -
References
top- Armandnejad, A., Gashool, Z., Strong linear preservers of g-tridiagonal majorization on , Electronic Journal of Linear Algebra, 123, 2012, 115-121, (2012) MR2889575
- Armandnejad, A., Mohtashami, S., Jamshidi, M., 10.1016/j.laa.2014.06.050, Linear Algebra and its Applications, 459, 2014, 145-153, (2014) MR3247220DOI10.1016/j.laa.2014.06.050
- Beasley, L.B., Lee, S.-G., Lee, Y.-H., 10.1016/S0024-3795(02)00657-2, Linear Algebra and its Applications, 367, 2003, 341-346, (2003) MR1976930DOI10.1016/S0024-3795(02)00657-2
- Bahatia, R., Matrix Analysis, 1997, Springer-Verlag, New York, (1997)
- Brualdi, R.A., Dahl, G., 10.1080/03081087.2012.689980, Linear and Multilinear Algebra, 6, 3, 2013, 393-408, (2013) MR3003432DOI10.1080/03081087.2012.689980
- Chiang, H., Li, C.K., 10.1080/03081080410001681599, Linear and Multilinear Algebra, 53, 2005, 1-11, (2005) MR2114138DOI10.1080/03081080410001681599
- Hasani, A.M., Radjabalipour, M., 10.13001/1081-3810.1236, Electronic Journal of Linear Algebra, 15, 2006, 260-268, (2006) MR2255479DOI10.13001/1081-3810.1236
- Hasani, A.M., Radjabalipour, M., 10.1016/j.laa.2006.12.016, Linear Algebra and its Applications, 423, 2007, 255-261, (2007) MR2312405DOI10.1016/j.laa.2006.12.016
- Marshall, A.W., Olkin, I., Arnold, B.C., Inequalities: Theory of majorization and its applications, 2011, Springer, New York, (2011) MR2759813
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.