The Niemytzki plane is ϰ -metrizable

Wojciech Bielas; Andrzej Kucharski; Szymon Plewik

Mathematica Bohemica (2021)

  • Volume: 146, Issue: 4, page 457-469
  • ISSN: 0862-7959

Abstract

top
We prove that the Niemytzki plane is ϰ -metrizable and we try to explain the differences between the concepts of a stratifiable space and a ϰ -metrizable space. Also, we give a characterisation of ϰ -metrizable spaces which is modelled on the version described by Chigogidze.

How to cite

top

Bielas, Wojciech, Kucharski, Andrzej, and Plewik, Szymon. "The Niemytzki plane is $\varkappa $-metrizable." Mathematica Bohemica 146.4 (2021): 457-469. <http://eudml.org/doc/297483>.

@article{Bielas2021,
abstract = {We prove that the Niemytzki plane is $\varkappa $-metrizable and we try to explain the differences between the concepts of a stratifiable space and a $\varkappa $-metrizable space. Also, we give a characterisation of $\varkappa $-metrizable spaces which is modelled on the version described by Chigogidze.},
author = {Bielas, Wojciech, Kucharski, Andrzej, Plewik, Szymon},
journal = {Mathematica Bohemica},
keywords = {stratifiable space; $\varkappa $-metrizable space; Niemytzki plane; Sorgenfrey line},
language = {eng},
number = {4},
pages = {457-469},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Niemytzki plane is $\varkappa $-metrizable},
url = {http://eudml.org/doc/297483},
volume = {146},
year = {2021},
}

TY - JOUR
AU - Bielas, Wojciech
AU - Kucharski, Andrzej
AU - Plewik, Szymon
TI - The Niemytzki plane is $\varkappa $-metrizable
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 4
SP - 457
EP - 469
AB - We prove that the Niemytzki plane is $\varkappa $-metrizable and we try to explain the differences between the concepts of a stratifiable space and a $\varkappa $-metrizable space. Also, we give a characterisation of $\varkappa $-metrizable spaces which is modelled on the version described by Chigogidze.
LA - eng
KW - stratifiable space; $\varkappa $-metrizable space; Niemytzki plane; Sorgenfrey line
UR - http://eudml.org/doc/297483
ER -

References

top
  1. Bielas, W., Plewik, Sz., 10.1007/s40065-018-0233-5, Arab. J. Math. 9 (2020), 83-88. (2020) Zbl1435.54008MR4062894DOI10.1007/s40065-018-0233-5
  2. Borges, C. J. R., 10.2140/pjm.1966.17.1, Pac. J. Math. 17 (1966), 1-16. (1966) Zbl0175.19802MR0188982DOI10.2140/pjm.1966.17.1
  3. Ceder, J. G., 10.2140/pjm.1961.11.105, Pac. J. Math. 11 (1961), 105-125. (1961) Zbl0103.39101MR0131860DOI10.2140/pjm.1961.11.105
  4. Chigogidze, A. Ch., 10.1070/RM1982v037n02ABEH003916, Russ. Math. Surv. 37 (1982), 209-210 translation from Uspekhi Mat. Nauk 37 1982 241-242. (1982) Zbl0503.54012MR0650791DOI10.1070/RM1982v037n02ABEH003916
  5. Engelking, R., General Topology, Sigma Series in Pure Mathematics 6. Heldermann Verlag, Berlin (1989). (1989) Zbl0684.54001MR1039321
  6. Kalantan, L., 10.1016/S0166-8641(01)00258-9, Topology Appl. 125 (2002), 47-62. (2002) Zbl1026.54014MR1931174DOI10.1016/S0166-8641(01)00258-9
  7. Kalemba, P., Plewik, Sz., 10.1016/j.topol.2018.11.006, Topology Appl. 252 (2019), 191-197. (2019) Zbl1407.54014MR3884192DOI10.1016/j.topol.2018.11.006
  8. Shchepin, E. V., 10.1070/RM1976v031n05ABEH004195, Russ. Math. Surv. 31 (1976), 155-191 translation from Uspekhi Mat. Nauk 31 1976 191-226. (1976) Zbl0356.54026MR0464137DOI10.1070/RM1976v031n05ABEH004195
  9. Shchepin, E. V., On κ -metrizable spaces, Izv. Akad. Nauk SSSR, Ser. Mat. 43 (1979), 442-478 Russian. (1979) Zbl0409.54040MR0534603
  10. Sierpiński, W., Introduction to General Topology, University of Toronto Press, Toronto (1934). (1934) Zbl0009.23203
  11. L. A. Steen, J. A. Seebach, Jr., Counterexamples in Topology, Holt, Rinehart and Winston, New York (1970). (1970) Zbl0211.54401MR0266131
  12. Suzuki, J., Tamano, K., Tanaka, Y., 10.1090/S0002-9939-1989-0933521-9, Proc. Am. Math. Soc. 105 (1989), 500-509. (1989) Zbl0672.54021MR0933521DOI10.1090/S0002-9939-1989-0933521-9

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.