The Niemytzki plane is -metrizable
Wojciech Bielas; Andrzej Kucharski; Szymon Plewik
Mathematica Bohemica (2021)
- Volume: 146, Issue: 4, page 457-469
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBielas, Wojciech, Kucharski, Andrzej, and Plewik, Szymon. "The Niemytzki plane is $\varkappa $-metrizable." Mathematica Bohemica 146.4 (2021): 457-469. <http://eudml.org/doc/297483>.
@article{Bielas2021,
abstract = {We prove that the Niemytzki plane is $\varkappa $-metrizable and we try to explain the differences between the concepts of a stratifiable space and a $\varkappa $-metrizable space. Also, we give a characterisation of $\varkappa $-metrizable spaces which is modelled on the version described by Chigogidze.},
author = {Bielas, Wojciech, Kucharski, Andrzej, Plewik, Szymon},
journal = {Mathematica Bohemica},
keywords = {stratifiable space; $\varkappa $-metrizable space; Niemytzki plane; Sorgenfrey line},
language = {eng},
number = {4},
pages = {457-469},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Niemytzki plane is $\varkappa $-metrizable},
url = {http://eudml.org/doc/297483},
volume = {146},
year = {2021},
}
TY - JOUR
AU - Bielas, Wojciech
AU - Kucharski, Andrzej
AU - Plewik, Szymon
TI - The Niemytzki plane is $\varkappa $-metrizable
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 4
SP - 457
EP - 469
AB - We prove that the Niemytzki plane is $\varkappa $-metrizable and we try to explain the differences between the concepts of a stratifiable space and a $\varkappa $-metrizable space. Also, we give a characterisation of $\varkappa $-metrizable spaces which is modelled on the version described by Chigogidze.
LA - eng
KW - stratifiable space; $\varkappa $-metrizable space; Niemytzki plane; Sorgenfrey line
UR - http://eudml.org/doc/297483
ER -
References
top- Bielas, W., Plewik, Sz., 10.1007/s40065-018-0233-5, Arab. J. Math. 9 (2020), 83-88. (2020) Zbl1435.54008MR4062894DOI10.1007/s40065-018-0233-5
- Borges, C. J. R., 10.2140/pjm.1966.17.1, Pac. J. Math. 17 (1966), 1-16. (1966) Zbl0175.19802MR0188982DOI10.2140/pjm.1966.17.1
- Ceder, J. G., 10.2140/pjm.1961.11.105, Pac. J. Math. 11 (1961), 105-125. (1961) Zbl0103.39101MR0131860DOI10.2140/pjm.1961.11.105
- Chigogidze, A. Ch., 10.1070/RM1982v037n02ABEH003916, Russ. Math. Surv. 37 (1982), 209-210 translation from Uspekhi Mat. Nauk 37 1982 241-242. (1982) Zbl0503.54012MR0650791DOI10.1070/RM1982v037n02ABEH003916
- Engelking, R., General Topology, Sigma Series in Pure Mathematics 6. Heldermann Verlag, Berlin (1989). (1989) Zbl0684.54001MR1039321
- Kalantan, L., 10.1016/S0166-8641(01)00258-9, Topology Appl. 125 (2002), 47-62. (2002) Zbl1026.54014MR1931174DOI10.1016/S0166-8641(01)00258-9
- Kalemba, P., Plewik, Sz., 10.1016/j.topol.2018.11.006, Topology Appl. 252 (2019), 191-197. (2019) Zbl1407.54014MR3884192DOI10.1016/j.topol.2018.11.006
- Shchepin, E. V., 10.1070/RM1976v031n05ABEH004195, Russ. Math. Surv. 31 (1976), 155-191 translation from Uspekhi Mat. Nauk 31 1976 191-226. (1976) Zbl0356.54026MR0464137DOI10.1070/RM1976v031n05ABEH004195
- Shchepin, E. V., On -metrizable spaces, Izv. Akad. Nauk SSSR, Ser. Mat. 43 (1979), 442-478 Russian. (1979) Zbl0409.54040MR0534603
- Sierpiński, W., Introduction to General Topology, University of Toronto Press, Toronto (1934). (1934) Zbl0009.23203
- L. A. Steen, J. A. Seebach, Jr., Counterexamples in Topology, Holt, Rinehart and Winston, New York (1970). (1970) Zbl0211.54401MR0266131
- Suzuki, J., Tamano, K., Tanaka, Y., 10.1090/S0002-9939-1989-0933521-9, Proc. Am. Math. Soc. 105 (1989), 500-509. (1989) Zbl0672.54021MR0933521DOI10.1090/S0002-9939-1989-0933521-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.