An instantaneous semi-Lagrangian approach for boundary control of a melting problem
Youness Mezzan; Moulay Hicham Tber
Applications of Mathematics (2021)
- Volume: 66, Issue: 5, page 725-744
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topMezzan, Youness, and Tber, Moulay Hicham. "An instantaneous semi-Lagrangian approach for boundary control of a melting problem." Applications of Mathematics 66.5 (2021): 725-744. <http://eudml.org/doc/297487>.
@article{Mezzan2021,
abstract = {In this paper, a sub-optimal boundary control strategy for a free boundary problem is investigated. The model is described by a non-smooth convection-diffusion equation. The control problem is addressed by an instantaneous strategy based on the characteristics method. The resulting time independent control problems are formulated as function space optimization problems with complementarity constraints. At each time step, the existence of an optimal solution is proved and first-order optimality conditions with regular Lagrange multipliers are derived for a penalized-regularized version. The performance of the overall approach is illustrated by numerical examples.},
author = {Mezzan, Youness, Tber, Moulay Hicham},
journal = {Applications of Mathematics},
keywords = {free boundary problem; sub-optimal boundary control; characteristics method; complementarity constraint; penalization-regularization},
language = {eng},
number = {5},
pages = {725-744},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An instantaneous semi-Lagrangian approach for boundary control of a melting problem},
url = {http://eudml.org/doc/297487},
volume = {66},
year = {2021},
}
TY - JOUR
AU - Mezzan, Youness
AU - Tber, Moulay Hicham
TI - An instantaneous semi-Lagrangian approach for boundary control of a melting problem
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 5
SP - 725
EP - 744
AB - In this paper, a sub-optimal boundary control strategy for a free boundary problem is investigated. The model is described by a non-smooth convection-diffusion equation. The control problem is addressed by an instantaneous strategy based on the characteristics method. The resulting time independent control problems are formulated as function space optimization problems with complementarity constraints. At each time step, the existence of an optimal solution is proved and first-order optimality conditions with regular Lagrange multipliers are derived for a penalized-regularized version. The performance of the overall approach is illustrated by numerical examples.
LA - eng
KW - free boundary problem; sub-optimal boundary control; characteristics method; complementarity constraint; penalization-regularization
UR - http://eudml.org/doc/297487
ER -
References
top- Abdulla, U. G., 10.3934/ipi.2013.7.307, Inverse Probl. Imaging 7 (2013), 307-340. (2013) Zbl1267.35247MR3063536DOI10.3934/ipi.2013.7.307
- Abdulla, U. G., 10.3934/ipi.2016025, Inverse Probl. Imaging 10 (2016), 869-898. (2016) Zbl1348.35305MR3610744DOI10.3934/ipi.2016025
- Abdulla, U. G., Goldfarb, J. M., 10.1515/jiip-2017-0014, J. Inverse Ill-Posed Probl. 26 (2018), 211-227. (2018) Zbl1390.35409MR3778603DOI10.1515/jiip-2017-0014
- Abdulla, U. G., Poggi, B., 10.1007/s00526-020-1712-z, Calc. Var. Partial Differ. Equ. 59 (2020), Article ID 61, 40 pages. (2020) Zbl1439.35553MR4073207DOI10.1007/s00526-020-1712-z
- Al-Saadi, S. N., Zhai, Z. J., 10.1016/j.rser.2013.01.024, Renew. Sust. Energy Rev. 21 (2013), 659-673. (2013) DOI10.1016/j.rser.2013.01.024
- Baran, B., Benner, P., Heiland, J., Saak, J., 10.2478/auom-2018-0016, An. Ştiinţ. Univ. "Ovidius" Constanţa, Ser. Mat. 26 (2018), 11-40. (2018) Zbl1438.49050MR3841350DOI10.2478/auom-2018-0016
- Bernauer, M. K., Herzog, R., 10.1137/100783327, SIAM J. Sci. Comput. 33 (2011), 342-363. (2011) Zbl1241.80013MR2783198DOI10.1137/100783327
- Choi, H., Hinze, M., Kunisch, K., 10.1016/S0168-9274(98)00131-7, Appl. Numer. Math. 31 (1999), 133-158. (1999) Zbl0939.76027MR1708955DOI10.1016/S0168-9274(98)00131-7
- Choi, H., Temam, R., Moin, P., Kim, J., 10.1017/S0022112093001880, J. Fluid Mech. 253 (1993), 509-543. (1993) Zbl0810.76012MR1233904DOI10.1017/S0022112093001880
- Dhir, V. K., Phase change heat transfer---a perspective for the future, Proceedings of Rohsenow Symposium on Future Trends in Heat Transfer Massachusetts Institute of Technology, Cambridge (2003), 6 pages Available at http://web.mit.edu/hmtl/www/papers/DHIR.pdf.
- Esen, A., Kutluay, S., 10.1016/S0096-3003(02)00846-9, Appl. Math. Comput. 148 (2004), 321-329. (2004) Zbl1034.65070MR2015374DOI10.1016/S0096-3003(02)00846-9
- Evans, L. C., 10.1090/gsm/019, Graduate Studies in Mathematics 19. American Mathematical Society, Providence (1998). (1998) Zbl0902.35002MR1625845DOI10.1090/gsm/019
- Gol'dman, N. L., 10.1007/978-94-011-5488-8, Mathematics and Its Applications 412. Kluwer Academic Publishers, Dordrecht (1997). (1997) Zbl0899.35123MR1463692DOI10.1007/978-94-011-5488-8
- Hintermüller, M., Laurain, A., Löbhard, C., Rautenberg, C. N., Surowiec, T. M., 10.1007/978-3-319-05083-6_9, Trends in PDE Constrained Optimization International Series of Numerical Mathematics 165. Springer, Cham (2014), 133-153. (2014) Zbl1327.49037MR3328974DOI10.1007/978-3-319-05083-6_9
- Hintermüller, M., Löbhard, C., Tber, M. H., 10.1007/978-3-319-17689-5_7, Numerical Analysis and Optimization Springer Proceedings in Mathematics & Statistics 134. Springer, Cham (2015), 151-190. (2015) Zbl1330.65101MR3446846DOI10.1007/978-3-319-17689-5_7
- Hinze, M., Ziegenbalg, S., 10.1016/j.jcp.2006.09.030, J. Comput. Phys. 223 (2007), 657-684. (2007) Zbl1115.80008MR2319228DOI10.1016/j.jcp.2006.09.030
- Hinze, M., Ziegenbalg, S., 10.1002/zamm.200610326, ZAMM, Z. Angew. Math. Mech. 87 (2007), 430-448. (2007) Zbl1123.49029MR2333667DOI10.1002/zamm.200610326
- Kinderlehrer, D., Stampacchia, G., 10.1137/1.9780898719451, Pure and Applied Mathematics 88. Academic Press, New York (1980). (1980) Zbl0457.35001MR0567696DOI10.1137/1.9780898719451
- Pironneau, O., 10.1007/BF01396435, Numer. Math. 38 (1982), 309-332. (1982) Zbl0505.76100MR0654100DOI10.1007/BF01396435
- Pironneau, O., Huberson, S., Characteristic-Galerkin and the particle method for the convection-diffusion equation and the Navier-Stokes equations, Lectures in Applied Mathematics 28. Vortex Dynamics and Vortex Methods American Mathematical Society, Providence (1991), 547-565. (1991) Zbl0751.76047MR1146484
- Tröltzsch, F., 10.1090/gsm/112, Graduate Studies in Mathematics 112. American Mathematical Society, Providence (2010). (2010) Zbl1195.49001MR2583281DOI10.1090/gsm/112
- Zowe, J., Kurcyusz, S., 10.1007/BF01442543, Appl. Math. Optim. 5 (1979), 49-62. (1979) Zbl0401.90104MR0526427DOI10.1007/BF01442543
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.