An instantaneous semi-Lagrangian approach for boundary control of a melting problem

Youness Mezzan; Moulay Hicham Tber

Applications of Mathematics (2021)

  • Volume: 66, Issue: 5, page 725-744
  • ISSN: 0862-7940

Abstract

top
In this paper, a sub-optimal boundary control strategy for a free boundary problem is investigated. The model is described by a non-smooth convection-diffusion equation. The control problem is addressed by an instantaneous strategy based on the characteristics method. The resulting time independent control problems are formulated as function space optimization problems with complementarity constraints. At each time step, the existence of an optimal solution is proved and first-order optimality conditions with regular Lagrange multipliers are derived for a penalized-regularized version. The performance of the overall approach is illustrated by numerical examples.

How to cite

top

Mezzan, Youness, and Tber, Moulay Hicham. "An instantaneous semi-Lagrangian approach for boundary control of a melting problem." Applications of Mathematics 66.5 (2021): 725-744. <http://eudml.org/doc/297487>.

@article{Mezzan2021,
abstract = {In this paper, a sub-optimal boundary control strategy for a free boundary problem is investigated. The model is described by a non-smooth convection-diffusion equation. The control problem is addressed by an instantaneous strategy based on the characteristics method. The resulting time independent control problems are formulated as function space optimization problems with complementarity constraints. At each time step, the existence of an optimal solution is proved and first-order optimality conditions with regular Lagrange multipliers are derived for a penalized-regularized version. The performance of the overall approach is illustrated by numerical examples.},
author = {Mezzan, Youness, Tber, Moulay Hicham},
journal = {Applications of Mathematics},
keywords = {free boundary problem; sub-optimal boundary control; characteristics method; complementarity constraint; penalization-regularization},
language = {eng},
number = {5},
pages = {725-744},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An instantaneous semi-Lagrangian approach for boundary control of a melting problem},
url = {http://eudml.org/doc/297487},
volume = {66},
year = {2021},
}

TY - JOUR
AU - Mezzan, Youness
AU - Tber, Moulay Hicham
TI - An instantaneous semi-Lagrangian approach for boundary control of a melting problem
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 5
SP - 725
EP - 744
AB - In this paper, a sub-optimal boundary control strategy for a free boundary problem is investigated. The model is described by a non-smooth convection-diffusion equation. The control problem is addressed by an instantaneous strategy based on the characteristics method. The resulting time independent control problems are formulated as function space optimization problems with complementarity constraints. At each time step, the existence of an optimal solution is proved and first-order optimality conditions with regular Lagrange multipliers are derived for a penalized-regularized version. The performance of the overall approach is illustrated by numerical examples.
LA - eng
KW - free boundary problem; sub-optimal boundary control; characteristics method; complementarity constraint; penalization-regularization
UR - http://eudml.org/doc/297487
ER -

References

top
  1. Abdulla, U. G., 10.3934/ipi.2013.7.307, Inverse Probl. Imaging 7 (2013), 307-340. (2013) Zbl1267.35247MR3063536DOI10.3934/ipi.2013.7.307
  2. Abdulla, U. G., 10.3934/ipi.2016025, Inverse Probl. Imaging 10 (2016), 869-898. (2016) Zbl1348.35305MR3610744DOI10.3934/ipi.2016025
  3. Abdulla, U. G., Goldfarb, J. M., 10.1515/jiip-2017-0014, J. Inverse Ill-Posed Probl. 26 (2018), 211-227. (2018) Zbl1390.35409MR3778603DOI10.1515/jiip-2017-0014
  4. Abdulla, U. G., Poggi, B., 10.1007/s00526-020-1712-z, Calc. Var. Partial Differ. Equ. 59 (2020), Article ID 61, 40 pages. (2020) Zbl1439.35553MR4073207DOI10.1007/s00526-020-1712-z
  5. Al-Saadi, S. N., Zhai, Z. J., 10.1016/j.rser.2013.01.024, Renew. Sust. Energy Rev. 21 (2013), 659-673. (2013) DOI10.1016/j.rser.2013.01.024
  6. Baran, B., Benner, P., Heiland, J., Saak, J., 10.2478/auom-2018-0016, An. Ştiinţ. Univ. "Ovidius" Constanţa, Ser. Mat. 26 (2018), 11-40. (2018) Zbl1438.49050MR3841350DOI10.2478/auom-2018-0016
  7. Bernauer, M. K., Herzog, R., 10.1137/100783327, SIAM J. Sci. Comput. 33 (2011), 342-363. (2011) Zbl1241.80013MR2783198DOI10.1137/100783327
  8. Choi, H., Hinze, M., Kunisch, K., 10.1016/S0168-9274(98)00131-7, Appl. Numer. Math. 31 (1999), 133-158. (1999) Zbl0939.76027MR1708955DOI10.1016/S0168-9274(98)00131-7
  9. Choi, H., Temam, R., Moin, P., Kim, J., 10.1017/S0022112093001880, J. Fluid Mech. 253 (1993), 509-543. (1993) Zbl0810.76012MR1233904DOI10.1017/S0022112093001880
  10. Dhir, V. K., Phase change heat transfer---a perspective for the future, Proceedings of Rohsenow Symposium on Future Trends in Heat Transfer Massachusetts Institute of Technology, Cambridge (2003), 6 pages Available at http://web.mit.edu/hmtl/www/papers/DHIR.pdf. 
  11. Esen, A., Kutluay, S., 10.1016/S0096-3003(02)00846-9, Appl. Math. Comput. 148 (2004), 321-329. (2004) Zbl1034.65070MR2015374DOI10.1016/S0096-3003(02)00846-9
  12. Evans, L. C., 10.1090/gsm/019, Graduate Studies in Mathematics 19. American Mathematical Society, Providence (1998). (1998) Zbl0902.35002MR1625845DOI10.1090/gsm/019
  13. Gol'dman, N. L., 10.1007/978-94-011-5488-8, Mathematics and Its Applications 412. Kluwer Academic Publishers, Dordrecht (1997). (1997) Zbl0899.35123MR1463692DOI10.1007/978-94-011-5488-8
  14. Hintermüller, M., Laurain, A., Löbhard, C., Rautenberg, C. N., Surowiec, T. M., 10.1007/978-3-319-05083-6_9, Trends in PDE Constrained Optimization International Series of Numerical Mathematics 165. Springer, Cham (2014), 133-153. (2014) Zbl1327.49037MR3328974DOI10.1007/978-3-319-05083-6_9
  15. Hintermüller, M., Löbhard, C., Tber, M. H., 10.1007/978-3-319-17689-5_7, Numerical Analysis and Optimization Springer Proceedings in Mathematics & Statistics 134. Springer, Cham (2015), 151-190. (2015) Zbl1330.65101MR3446846DOI10.1007/978-3-319-17689-5_7
  16. Hinze, M., Ziegenbalg, S., 10.1016/j.jcp.2006.09.030, J. Comput. Phys. 223 (2007), 657-684. (2007) Zbl1115.80008MR2319228DOI10.1016/j.jcp.2006.09.030
  17. Hinze, M., Ziegenbalg, S., 10.1002/zamm.200610326, ZAMM, Z. Angew. Math. Mech. 87 (2007), 430-448. (2007) Zbl1123.49029MR2333667DOI10.1002/zamm.200610326
  18. Kinderlehrer, D., Stampacchia, G., 10.1137/1.9780898719451, Pure and Applied Mathematics 88. Academic Press, New York (1980). (1980) Zbl0457.35001MR0567696DOI10.1137/1.9780898719451
  19. Pironneau, O., 10.1007/BF01396435, Numer. Math. 38 (1982), 309-332. (1982) Zbl0505.76100MR0654100DOI10.1007/BF01396435
  20. Pironneau, O., Huberson, S., Characteristic-Galerkin and the particle method for the convection-diffusion equation and the Navier-Stokes equations, Lectures in Applied Mathematics 28. Vortex Dynamics and Vortex Methods American Mathematical Society, Providence (1991), 547-565. (1991) Zbl0751.76047MR1146484
  21. Tröltzsch, F., 10.1090/gsm/112, Graduate Studies in Mathematics 112. American Mathematical Society, Providence (2010). (2010) Zbl1195.49001MR2583281DOI10.1090/gsm/112
  22. Zowe, J., Kurcyusz, S., 10.1007/BF01442543, Appl. Math. Optim. 5 (1979), 49-62. (1979) Zbl0401.90104MR0526427DOI10.1007/BF01442543

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.