Symmetric identity for polynomial sequences satisfying A n + 1 ' ( x ) = ( n + 1 ) A n ( x )

Farid Bencherif; Rachid Boumahdi; Tarek Garici

Communications in Mathematics (2021)

  • Volume: 29, Issue: 3, page 343-355
  • ISSN: 1804-1388

Abstract

top
Using umbral calculus, we establish a symmetric identity for any sequence of polynomials satisfying A n + 1 ' ( x ) = ( n + 1 ) A n ( x ) with A 0 ( x ) a constant polynomial. This identity allows us to obtain in a simple way some known relations involving Apostol-Bernoulli polynomials, ApostolEuler polynomials and generalized Bernoulli polynomials attached to a primitive Dirichlet character.

How to cite

top

Bencherif, Farid, Boumahdi, Rachid, and Garici, Tarek. "Symmetric identity for polynomial sequences satisfying $A_{n+1}^\prime (x)=(n+1)A_n(x)$." Communications in Mathematics 29.3 (2021): 343-355. <http://eudml.org/doc/297504>.

@article{Bencherif2021,
abstract = {Using umbral calculus, we establish a symmetric identity for any sequence of polynomials satisfying $A_\{n+1\}^\prime (x) =(n+1)A_\{n\}(x)$ with $A_0(x)$ a constant polynomial. This identity allows us to obtain in a simple way some known relations involving Apostol-Bernoulli polynomials, ApostolEuler polynomials and generalized Bernoulli polynomials attached to a primitive Dirichlet character.},
author = {Bencherif, Farid, Boumahdi, Rachid, Garici, Tarek},
journal = {Communications in Mathematics},
keywords = {Appell sequence; Apostol-Bernoulli polynomial; Apostol-Euler polynomial; generalized Bernoulli polynomial; primitive Dirichlet character},
language = {eng},
number = {3},
pages = {343-355},
publisher = {University of Ostrava},
title = {Symmetric identity for polynomial sequences satisfying $A_\{n+1\}^\prime (x)=(n+1)A_n(x)$},
url = {http://eudml.org/doc/297504},
volume = {29},
year = {2021},
}

TY - JOUR
AU - Bencherif, Farid
AU - Boumahdi, Rachid
AU - Garici, Tarek
TI - Symmetric identity for polynomial sequences satisfying $A_{n+1}^\prime (x)=(n+1)A_n(x)$
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
VL - 29
IS - 3
SP - 343
EP - 355
AB - Using umbral calculus, we establish a symmetric identity for any sequence of polynomials satisfying $A_{n+1}^\prime (x) =(n+1)A_{n}(x)$ with $A_0(x)$ a constant polynomial. This identity allows us to obtain in a simple way some known relations involving Apostol-Bernoulli polynomials, ApostolEuler polynomials and generalized Bernoulli polynomials attached to a primitive Dirichlet character.
LA - eng
KW - Appell sequence; Apostol-Bernoulli polynomial; Apostol-Euler polynomial; generalized Bernoulli polynomial; primitive Dirichlet character
UR - http://eudml.org/doc/297504
ER -

References

top
  1. Agoh, T., 10.1016/j.jnt.2016.12.014, Journal of Number Theory, 176, 2017, 149-173, Elsevier, (2017) MR3622124DOI10.1016/j.jnt.2016.12.014
  2. Appell, P., Sur une classe de polynômes, Annales Scientifiques de l'École Normale Supérieure, 9, 1880, 119-144, (1880) 
  3. Sun, W.Y.C. Chen,L.H., 10.1016/j.jnt.2009.01.026, Journal of Number Theory, 129, 9, 2009, 2111-2132, Elsevier, (2009) MR2528056DOI10.1016/j.jnt.2009.01.026
  4. Gel'fand, I.M., Shilov, G.E., Generalized Functions, Vol. 1: Properties and Operations, 1964, Acad. Press, New York, (1964) 
  5. Gelfand, M.B., A note on a certain relation among Bernoulli numbers, Baškir. Gos. Univ. Ucen. Zap. Vyp, 31, 1968, 215-216, (1968) 
  6. Gessel, I.M., 10.1007/s00012-003-1813-5, Algebra Univers., 49, 4, 2003, 397-434, (2003) MR2022347DOI10.1007/s00012-003-1813-5
  7. He, Y., Zhang, W., 10.37236/456, The Electronic Journal of Combinatorics, 17, N7, 2010, 7pp, (2010) MR2587757DOI10.37236/456
  8. Kaneko, M., A recurrence formula for the Bernoulli numbers, Proceedings of the Japan Academy, Series A, Mathematical Sciences, 71, 8, 1995, 192-193, The Japan Academy, (1995) 
  9. Luo, Q.-M., Srivastava, H.M., 10.1016/j.jmaa.2005.01.020, Journal of Mathematical Analysis and Applications, 308, 1, 2005, 290-302, Elsevier, (2005) MR2142419DOI10.1016/j.jmaa.2005.01.020
  10. Momiyama, H., A new recurrence formula for Bernoulli numbers, Fibonacci Quarterly, 39, 3, 2001, 285-288, THE FIBONACCI ASSOCIATION, (2001) MR1840040
  11. Prévost, M., 10.1016/j.cam.2009.11.050, Journal of computational and applied mathematics, 233, 11, 2010, 3005-3017, Elsevier, (2010) MR2592274DOI10.1016/j.cam.2009.11.050
  12. Rota, G.-C., 10.1080/00029890.1964.11992270, The American Mathematical Monthly, 71, 5, 1964, 498-504, Taylor & Francis, (1964) DOI10.1080/00029890.1964.11992270
  13. Stern, M., Beiträge zur Theorie der Bernoullischen und Eulerschen Zahlen, Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen, 26, 1880, 3-46, (1880) 
  14. Sun, Z.-W., 10.1016/S0195-6698(03)00062-3, European Journal of Combinatorics, 24, 6, 2003, 709-718, Elsevier, (2003) MR1995582DOI10.1016/S0195-6698(03)00062-3
  15. Ettingshausen, A. von, Vorlesungen über die höhere Mathematik, 1827, C. Gerold, Vienna, (1827) 
  16. Seidel, P.L. von, Uber eine einfache Entstehungsweise der Bernoullischen Zahlen und einiger verwandten Reihen, Sitzungsberichte der Münch, Akad. Math. Phys. Classe, 7, 1877, 157-187, (1877) 
  17. Wu, K.-J., Sun, Z.-W., Pan, H., Some identities for Bernoulli and Euler polynomials, Fibonacci Quarterly, 42, 4, 2004, 295-299, (2004) MR2110081

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.