Symmetric identity for polynomial sequences satisfying
Farid Bencherif; Rachid Boumahdi; Tarek Garici
Communications in Mathematics (2021)
- Volume: 29, Issue: 3, page 343-355
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topBencherif, Farid, Boumahdi, Rachid, and Garici, Tarek. "Symmetric identity for polynomial sequences satisfying $A_{n+1}^\prime (x)=(n+1)A_n(x)$." Communications in Mathematics 29.3 (2021): 343-355. <http://eudml.org/doc/297504>.
@article{Bencherif2021,
abstract = {Using umbral calculus, we establish a symmetric identity for any sequence of polynomials satisfying $A_\{n+1\}^\prime (x) =(n+1)A_\{n\}(x)$ with $A_0(x)$ a constant polynomial. This identity allows us to obtain in a simple way some known relations involving Apostol-Bernoulli polynomials, ApostolEuler polynomials and generalized Bernoulli polynomials attached to a primitive Dirichlet character.},
author = {Bencherif, Farid, Boumahdi, Rachid, Garici, Tarek},
journal = {Communications in Mathematics},
keywords = {Appell sequence; Apostol-Bernoulli polynomial; Apostol-Euler polynomial; generalized Bernoulli polynomial; primitive Dirichlet character},
language = {eng},
number = {3},
pages = {343-355},
publisher = {University of Ostrava},
title = {Symmetric identity for polynomial sequences satisfying $A_\{n+1\}^\prime (x)=(n+1)A_n(x)$},
url = {http://eudml.org/doc/297504},
volume = {29},
year = {2021},
}
TY - JOUR
AU - Bencherif, Farid
AU - Boumahdi, Rachid
AU - Garici, Tarek
TI - Symmetric identity for polynomial sequences satisfying $A_{n+1}^\prime (x)=(n+1)A_n(x)$
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
VL - 29
IS - 3
SP - 343
EP - 355
AB - Using umbral calculus, we establish a symmetric identity for any sequence of polynomials satisfying $A_{n+1}^\prime (x) =(n+1)A_{n}(x)$ with $A_0(x)$ a constant polynomial. This identity allows us to obtain in a simple way some known relations involving Apostol-Bernoulli polynomials, ApostolEuler polynomials and generalized Bernoulli polynomials attached to a primitive Dirichlet character.
LA - eng
KW - Appell sequence; Apostol-Bernoulli polynomial; Apostol-Euler polynomial; generalized Bernoulli polynomial; primitive Dirichlet character
UR - http://eudml.org/doc/297504
ER -
References
top- Agoh, T., 10.1016/j.jnt.2016.12.014, Journal of Number Theory, 176, 2017, 149-173, Elsevier, (2017) MR3622124DOI10.1016/j.jnt.2016.12.014
- Appell, P., Sur une classe de polynômes, Annales Scientifiques de l'École Normale Supérieure, 9, 1880, 119-144, (1880)
- Sun, W.Y.C. Chen,L.H., 10.1016/j.jnt.2009.01.026, Journal of Number Theory, 129, 9, 2009, 2111-2132, Elsevier, (2009) MR2528056DOI10.1016/j.jnt.2009.01.026
- Gel'fand, I.M., Shilov, G.E., Generalized Functions, Vol. 1: Properties and Operations, 1964, Acad. Press, New York, (1964)
- Gelfand, M.B., A note on a certain relation among Bernoulli numbers, Baškir. Gos. Univ. Ucen. Zap. Vyp, 31, 1968, 215-216, (1968)
- Gessel, I.M., 10.1007/s00012-003-1813-5, Algebra Univers., 49, 4, 2003, 397-434, (2003) MR2022347DOI10.1007/s00012-003-1813-5
- He, Y., Zhang, W., 10.37236/456, The Electronic Journal of Combinatorics, 17, N7, 2010, 7pp, (2010) MR2587757DOI10.37236/456
- Kaneko, M., A recurrence formula for the Bernoulli numbers, Proceedings of the Japan Academy, Series A, Mathematical Sciences, 71, 8, 1995, 192-193, The Japan Academy, (1995)
- Luo, Q.-M., Srivastava, H.M., 10.1016/j.jmaa.2005.01.020, Journal of Mathematical Analysis and Applications, 308, 1, 2005, 290-302, Elsevier, (2005) MR2142419DOI10.1016/j.jmaa.2005.01.020
- Momiyama, H., A new recurrence formula for Bernoulli numbers, Fibonacci Quarterly, 39, 3, 2001, 285-288, THE FIBONACCI ASSOCIATION, (2001) MR1840040
- Prévost, M., 10.1016/j.cam.2009.11.050, Journal of computational and applied mathematics, 233, 11, 2010, 3005-3017, Elsevier, (2010) MR2592274DOI10.1016/j.cam.2009.11.050
- Rota, G.-C., 10.1080/00029890.1964.11992270, The American Mathematical Monthly, 71, 5, 1964, 498-504, Taylor & Francis, (1964) DOI10.1080/00029890.1964.11992270
- Stern, M., Beiträge zur Theorie der Bernoullischen und Eulerschen Zahlen, Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen, 26, 1880, 3-46, (1880)
- Sun, Z.-W., 10.1016/S0195-6698(03)00062-3, European Journal of Combinatorics, 24, 6, 2003, 709-718, Elsevier, (2003) MR1995582DOI10.1016/S0195-6698(03)00062-3
- Ettingshausen, A. von, Vorlesungen über die höhere Mathematik, 1827, C. Gerold, Vienna, (1827)
- Seidel, P.L. von, Uber eine einfache Entstehungsweise der Bernoullischen Zahlen und einiger verwandten Reihen, Sitzungsberichte der Münch, Akad. Math. Phys. Classe, 7, 1877, 157-187, (1877)
- Wu, K.-J., Sun, Z.-W., Pan, H., Some identities for Bernoulli and Euler polynomials, Fibonacci Quarterly, 42, 4, 2004, 295-299, (2004) MR2110081
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.