On discrete mean values of Dirichlet -functions
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 4, page 1035-1048
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topElma, Ertan. "On discrete mean values of Dirichlet $L$-functions." Czechoslovak Mathematical Journal 71.4 (2021): 1035-1048. <http://eudml.org/doc/297519>.
@article{Elma2021,
abstract = {Let $\chi $ be a nonprincipal Dirichlet character modulo a prime number $p\geqslant 3$ and let $\mathfrak \{a\}_\chi := \tfrac\{1\}\{2\} (1-\chi (-1))$. Define the mean value \[ \mathcal \{M\}\_\{p\}(-s,\chi ) :=\frac\{2\}\{p-1\} \sum \psi \hspace\{10.0pt\}(\@mod \; p) \psi (-1)=-1 L(1,\psi )L(-s,\chi \bar\{\psi \}) \quad (\sigma :=\Re s>0). \]
We give an identity for $\mathcal \{M\}_\{p\}(-s,\chi )$ which, in particular, shows that \[ \mathcal \{M\}\_\{p\}(-s,\chi )= L(1-s,\chi )+\mathfrak \{a\}\_\chi 2p^s L(1,\chi )\zeta (-s) +o(1) \quad (p\rightarrow \infty ) \]
for fixed $0<\sigma <\frac\{1\}\{2\}$ and $|t:=\Im s|=o (p^\{(1-2\sigma )/(3+2\sigma )\})$.},
author = {Elma, Ertan},
journal = {Czechoslovak Mathematical Journal},
keywords = {Dirichlet $L$-function; mean value; Dirichlet character},
language = {eng},
number = {4},
pages = {1035-1048},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On discrete mean values of Dirichlet $L$-functions},
url = {http://eudml.org/doc/297519},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Elma, Ertan
TI - On discrete mean values of Dirichlet $L$-functions
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 4
SP - 1035
EP - 1048
AB - Let $\chi $ be a nonprincipal Dirichlet character modulo a prime number $p\geqslant 3$ and let $\mathfrak {a}_\chi := \tfrac{1}{2} (1-\chi (-1))$. Define the mean value \[ \mathcal {M}_{p}(-s,\chi ) :=\frac{2}{p-1} \sum \psi \hspace{10.0pt}(\@mod \; p) \psi (-1)=-1 L(1,\psi )L(-s,\chi \bar{\psi }) \quad (\sigma :=\Re s>0). \]
We give an identity for $\mathcal {M}_{p}(-s,\chi )$ which, in particular, shows that \[ \mathcal {M}_{p}(-s,\chi )= L(1-s,\chi )+\mathfrak {a}_\chi 2p^s L(1,\chi )\zeta (-s) +o(1) \quad (p\rightarrow \infty ) \]
for fixed $0<\sigma <\frac{1}{2}$ and $|t:=\Im s|=o (p^{(1-2\sigma )/(3+2\sigma )})$.
LA - eng
KW - Dirichlet $L$-function; mean value; Dirichlet character
UR - http://eudml.org/doc/297519
ER -
References
top- Davenport, H., 10.1007/978-1-4757-5927-3, Graduate Texts in Mathematics 74. Springer, New York (2000). (2000) Zbl1002.11001MR1790423DOI10.1007/978-1-4757-5927-3
- Elma, E., 10.1016/j.jnt.2020.05.019, J. Number Theory 217 (2020), 36-43. (2020) Zbl07242300MR4140619DOI10.1016/j.jnt.2020.05.019
- Ivić, A., The Riemann Zeta-Function: Theory and Applications, Dover Publications, Mineola (2003). (2003) Zbl1034.11046MR1994094
- Kanemitsu, S., Ma, J., Zhang, W., 10.1007/s12188-009-0016-1, Abh. Math. Semin. Univ. Hamb. 79 (2009), 149-164. (2009) Zbl1259.11076MR2545597DOI10.1007/s12188-009-0016-1
- Liu, H., Zhang, W., 10.4064/aa122-1-5, Acta Arith. 122 (2006), 51-56. (2006) Zbl1108.11062MR2217323DOI10.4064/aa122-1-5
- Louboutin, S., 10.4153/CMB-1993-028-8, Can. Math. Bull. 36 (1993), 190-196. (1993) Zbl0802.11032MR1222534DOI10.4153/CMB-1993-028-8
- Louboutin, S., 10.4064/cm90-1-6, Colloq. Math. 90 (2001), 69-76. (2001) Zbl1013.11049MR1874365DOI10.4064/cm90-1-6
- Matsumoto, K., 10.1007/978-93-86279-02-6_14, Number Theory Trends in Mathematics. Birkhäuser, Basel (2000), 241-286. (2000) Zbl0959.11036MR1764806DOI10.1007/978-93-86279-02-6_14
- Montgomery, H. L., Vaughan, R. C., 10.1017/CBO9780511618314, Cambridge Studies in Advanced Mathematics 97. Cambridge University Press, Cambridge (2007). (2007) Zbl1142.11001MR2378655DOI10.1017/CBO9780511618314
- Motohashi, Y., 10.3792/pjaa.61.222, Proc. Japan Acad., Ser. A 61 (1985), 222-224. (1985) Zbl0573.10027MR0816718DOI10.3792/pjaa.61.222
- Titchmarsh, E. C., The Theory of the Riemann Zeta-Function, Oxford Science Publications. Clarendon Press, Oxford (1986). (1986) Zbl0601.10026MR0882550
- Xu, Z., Zhang, W., 10.4064/aa130-2-5, Acta Arith. 130 (2007), 157-166. (2007) Zbl1154.11027MR2357653DOI10.4064/aa130-2-5
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.