On discrete mean values of Dirichlet L -functions

Ertan Elma

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 4, page 1035-1048
  • ISSN: 0011-4642

Abstract

top
Let χ be a nonprincipal Dirichlet character modulo a prime number p 3 and let 𝔞 χ : = 1 2 ( 1 - χ ( - 1 ) ) . Define the mean value p ( - s , χ ) : = 2 p - 1 ψ ( mod p ) ψ ( - 1 ) = - 1 L ( 1 , ψ ) L ( - s , χ ψ ¯ ) ( σ : = s > 0 ) . We give an identity for p ( - s , χ ) which, in particular, shows that p ( - s , χ ) = L ( 1 - s , χ ) + 𝔞 χ 2 p s L ( 1 , χ ) ζ ( - s ) + o ( 1 ) ( p ) for fixed 0 < σ < 1 2 and | t : = s | = o ( p ( 1 - 2 σ ) / ( 3 + 2 σ ) ) .

How to cite

top

Elma, Ertan. "On discrete mean values of Dirichlet $L$-functions." Czechoslovak Mathematical Journal 71.4 (2021): 1035-1048. <http://eudml.org/doc/297519>.

@article{Elma2021,
abstract = {Let $\chi $ be a nonprincipal Dirichlet character modulo a prime number $p\geqslant 3$ and let $\mathfrak \{a\}_\chi := \tfrac\{1\}\{2\} (1-\chi (-1))$. Define the mean value \[ \mathcal \{M\}\_\{p\}(-s,\chi ) :=\frac\{2\}\{p-1\} \sum \psi \hspace\{10.0pt\}(\@mod \; p) \psi (-1)=-1 L(1,\psi )L(-s,\chi \bar\{\psi \}) \quad (\sigma :=\Re s>0). \] We give an identity for $\mathcal \{M\}_\{p\}(-s,\chi )$ which, in particular, shows that \[ \mathcal \{M\}\_\{p\}(-s,\chi )= L(1-s,\chi )+\mathfrak \{a\}\_\chi 2p^s L(1,\chi )\zeta (-s) +o(1) \quad (p\rightarrow \infty ) \] for fixed $0<\sigma <\frac\{1\}\{2\}$ and $|t:=\Im s|=o (p^\{(1-2\sigma )/(3+2\sigma )\})$.},
author = {Elma, Ertan},
journal = {Czechoslovak Mathematical Journal},
keywords = {Dirichlet $L$-function; mean value; Dirichlet character},
language = {eng},
number = {4},
pages = {1035-1048},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On discrete mean values of Dirichlet $L$-functions},
url = {http://eudml.org/doc/297519},
volume = {71},
year = {2021},
}

TY - JOUR
AU - Elma, Ertan
TI - On discrete mean values of Dirichlet $L$-functions
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 4
SP - 1035
EP - 1048
AB - Let $\chi $ be a nonprincipal Dirichlet character modulo a prime number $p\geqslant 3$ and let $\mathfrak {a}_\chi := \tfrac{1}{2} (1-\chi (-1))$. Define the mean value \[ \mathcal {M}_{p}(-s,\chi ) :=\frac{2}{p-1} \sum \psi \hspace{10.0pt}(\@mod \; p) \psi (-1)=-1 L(1,\psi )L(-s,\chi \bar{\psi }) \quad (\sigma :=\Re s>0). \] We give an identity for $\mathcal {M}_{p}(-s,\chi )$ which, in particular, shows that \[ \mathcal {M}_{p}(-s,\chi )= L(1-s,\chi )+\mathfrak {a}_\chi 2p^s L(1,\chi )\zeta (-s) +o(1) \quad (p\rightarrow \infty ) \] for fixed $0<\sigma <\frac{1}{2}$ and $|t:=\Im s|=o (p^{(1-2\sigma )/(3+2\sigma )})$.
LA - eng
KW - Dirichlet $L$-function; mean value; Dirichlet character
UR - http://eudml.org/doc/297519
ER -

References

top
  1. Davenport, H., 10.1007/978-1-4757-5927-3, Graduate Texts in Mathematics 74. Springer, New York (2000). (2000) Zbl1002.11001MR1790423DOI10.1007/978-1-4757-5927-3
  2. Elma, E., 10.1016/j.jnt.2020.05.019, J. Number Theory 217 (2020), 36-43. (2020) Zbl07242300MR4140619DOI10.1016/j.jnt.2020.05.019
  3. Ivić, A., The Riemann Zeta-Function: Theory and Applications, Dover Publications, Mineola (2003). (2003) Zbl1034.11046MR1994094
  4. Kanemitsu, S., Ma, J., Zhang, W., 10.1007/s12188-009-0016-1, Abh. Math. Semin. Univ. Hamb. 79 (2009), 149-164. (2009) Zbl1259.11076MR2545597DOI10.1007/s12188-009-0016-1
  5. Liu, H., Zhang, W., 10.4064/aa122-1-5, Acta Arith. 122 (2006), 51-56. (2006) Zbl1108.11062MR2217323DOI10.4064/aa122-1-5
  6. Louboutin, S., 10.4153/CMB-1993-028-8, Can. Math. Bull. 36 (1993), 190-196. (1993) Zbl0802.11032MR1222534DOI10.4153/CMB-1993-028-8
  7. Louboutin, S., 10.4064/cm90-1-6, Colloq. Math. 90 (2001), 69-76. (2001) Zbl1013.11049MR1874365DOI10.4064/cm90-1-6
  8. Matsumoto, K., 10.1007/978-93-86279-02-6_14, Number Theory Trends in Mathematics. Birkhäuser, Basel (2000), 241-286. (2000) Zbl0959.11036MR1764806DOI10.1007/978-93-86279-02-6_14
  9. Montgomery, H. L., Vaughan, R. C., 10.1017/CBO9780511618314, Cambridge Studies in Advanced Mathematics 97. Cambridge University Press, Cambridge (2007). (2007) Zbl1142.11001MR2378655DOI10.1017/CBO9780511618314
  10. Motohashi, Y., 10.3792/pjaa.61.222, Proc. Japan Acad., Ser. A 61 (1985), 222-224. (1985) Zbl0573.10027MR0816718DOI10.3792/pjaa.61.222
  11. Titchmarsh, E. C., The Theory of the Riemann Zeta-Function, Oxford Science Publications. Clarendon Press, Oxford (1986). (1986) Zbl0601.10026MR0882550
  12. Xu, Z., Zhang, W., 10.4064/aa130-2-5, Acta Arith. 130 (2007), 157-166. (2007) Zbl1154.11027MR2357653DOI10.4064/aa130-2-5

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.