Actions of the additive group on certain noncommutative deformations of the plane
Ivan Kaygorodov; Samuel A. Lopes; Farukh Mashurov
Communications in Mathematics (2021)
- Volume: 29, Issue: 2, page 269-279
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topKaygorodov, Ivan, Lopes, Samuel A., and Mashurov, Farukh. "Actions of the additive group $ {G}_a$ on certain noncommutative deformations of the plane." Communications in Mathematics 29.2 (2021): 269-279. <http://eudml.org/doc/297521>.
@article{Kaygorodov2021,
abstract = {We connect the theorems of Rentschler [rR68] and Dixmier [jD68] on locally nilpotent derivations and automorphisms of the polynomial ring $A _0$ and of the Weyl algebra $A _1$, both over a field of characteristic zero, by establishing the same type of results for the family of algebras \[A \_h=\langle x, y\mid yx-xy=h(x)\rangle \,,\]
where $h$ is an arbitrary polynomial in $x$. In the second part of the paper we consider a field $\mathbb \{F\}$ of prime characteristic and study $\mathbb \{F\}[t]$comodule algebra structures on $A _h$. We also compute the Makar-Limanov invariant of absolute constants of $A _h$ over a field of arbitrary characteristic and show how this subalgebra determines the automorphism group of $A _h$.},
author = {Kaygorodov, Ivan, Lopes, Samuel A., Mashurov, Farukh},
journal = {Communications in Mathematics},
keywords = {Derivations; iterative higher derivations; rings of differential operators; Weyl algebra},
language = {eng},
number = {2},
pages = {269-279},
publisher = {University of Ostrava},
title = {Actions of the additive group $ \{G\}_a$ on certain noncommutative deformations of the plane},
url = {http://eudml.org/doc/297521},
volume = {29},
year = {2021},
}
TY - JOUR
AU - Kaygorodov, Ivan
AU - Lopes, Samuel A.
AU - Mashurov, Farukh
TI - Actions of the additive group $ {G}_a$ on certain noncommutative deformations of the plane
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
VL - 29
IS - 2
SP - 269
EP - 279
AB - We connect the theorems of Rentschler [rR68] and Dixmier [jD68] on locally nilpotent derivations and automorphisms of the polynomial ring $A _0$ and of the Weyl algebra $A _1$, both over a field of characteristic zero, by establishing the same type of results for the family of algebras \[A _h=\langle x, y\mid yx-xy=h(x)\rangle \,,\]
where $h$ is an arbitrary polynomial in $x$. In the second part of the paper we consider a field $\mathbb {F}$ of prime characteristic and study $\mathbb {F}[t]$comodule algebra structures on $A _h$. We also compute the Makar-Limanov invariant of absolute constants of $A _h$ over a field of arbitrary characteristic and show how this subalgebra determines the automorphism group of $A _h$.
LA - eng
KW - Derivations; iterative higher derivations; rings of differential operators; Weyl algebra
UR - http://eudml.org/doc/297521
ER -
References
top- J. Alev, F. Dumas, 10.1080/00927879708825943, Communications in Algebra, 25, 5, 1997, 1655-1672, Taylor & Francis, (1997) DOI10.1080/00927879708825943
- Bavula, V., Jordan, D., 10.1090/S0002-9947-00-02678-7, Transactions of the American Mathematical Society, 353, 2, 2001, 769-794, (2001) DOI10.1090/S0002-9947-00-02678-7
- Belov-Kanel, A., Kontsevich, M., 10.17323/1609-4514-2007-7-2-209-218, Moscow Mathematical Journal, 7, 2, 2007, 209-218, (2007) DOI10.17323/1609-4514-2007-7-2-209-218
- Benkart, G., Lopes, S.A., Ondrus, M., 10.1090/conm/602/12027, Recent developments in algebraic and combinatorial aspects of representation theory, vol. 602 of Contemporary Mathematics, 2013, 73-98, American Mathematical Society, (2013) DOI10.1090/conm/602/12027
- Benkart, G., Lopes, S.A., Ondrus, M., 10.1016/j.jalgebra.2014.11.007, Journal of Algebra, 424, 2015, 46-97, Elsevier, (2015) DOI10.1016/j.jalgebra.2014.11.007
- Benkart, G., Lopes, S.A., Ondrus, M., 10.1090/S0002-9947-2014-06144-8, Transactions of the American Mathematical Society, 367, 3, 2015, 1993-2021, (2015) DOI10.1090/S0002-9947-2014-06144-8
- Crachiola, A., Makar-Limanov, L., 10.1016/j.jalgebra.2004.09.015, Journal of Algebra, 284, 1, 2005, 1-12, Elsevier, (2005) DOI10.1016/j.jalgebra.2004.09.015
- Crachiola, A.J., 10.1090/S0002-9939-05-08171-2, Proceedings of the American Mathematical Society, 134, 5, 2006, 1289-1298, (2006) DOI10.1090/S0002-9939-05-08171-2
- Crode, S.D., Shestakov, I.P., 10.1080/00927872.2020.1729363, Communications in Algebra, 48, 7, 2020, 3091-3098, Taylor & Francis, (2020) DOI10.1080/00927872.2020.1729363
- Dixmier, J., Sur les algèbres de Weyl, Bulletin de la Société mathématique de France, 96, 1968, 209-242, (1968)
- Dixmier, J., Enveloping algebras, 1996, American Mathematical Society, Vol. 11 of Graduate Studies in Mathematics. Revised reprint of the 1977 translation.. (1996)
- Drensky, V., Makar-Limanov, L., Locally nilpotent derivations of free algebra of rank two, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 15, 2019, Paper No. 091, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, (2019)
- Jung, H.W.E., Über ganze birationale Transformationen der Ebene, Journal für die Reine und Angewandte Mathematik, 1942, 184, 1942, 161-174, De Gruyter, (1942)
- Kaygorodov, I., Shestakov, I., Umirbaev, U., 10.1080/00927872.2017.1358269, Communications in Algebra, 46, 4, 2018, 1799-1812, Taylor & Francis, (2018) DOI10.1080/00927872.2017.1358269
- Makar-Limanov, L., 10.1007/BF02937314, Israel Journal of Mathematics, 96, 2, 1996, 419-429, Springer, (1996) DOI10.1007/BF02937314
- Makar-Limanov, L., Turusbekova, U., Umirbaev, U., 10.1016/j.jalgebra.2008.01.005, Journal of Algebra, 322, 9, 2009, 3318-3330, Elsevier, (2009) DOI10.1016/j.jalgebra.2008.01.005
- Miyanishi, M., 10.1017/S0027763000014094, Nagoya Mathematical Journal, 41, 1971, 97-100, Cambridge University Press, (1971) DOI10.1017/S0027763000014094
- Rentschler, R., Opérations du groupe additif sur le plan affine, Comptes rendus de l'Académie des Sciences, Sér. A-B, 267, 1968, 384-387, (1968)
- Restuccia, G., Schneider, H.J., 10.1016/S0021-8693(02)00683-X, Journal of Algebra, 261, 2, 2003, 229-244, Academic Press, (2003) DOI10.1016/S0021-8693(02)00683-X
- Restuccia, G., Schneider, H.J., On actions of the additive group on the Weyl algebra, Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali, 83, 1, 2005, 9pp, (2005)
- Tsuchimoto, Y., Endomorphisms of Weyl algebra and -curvatures, Osaka Journal of Mathematics, 42, 2, 2005, 435-452, Osaka University and Osaka City University, Departments of Mathematics, (2005)
- Essen, A. Van den, Polynomial automorphisms and the Jacobian conjecture, 190, 2000, Birkhäuser, Progress in Mathematics, vol. 190.. (2000)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.