Actions of the additive group G a on certain noncommutative deformations of the plane

Ivan Kaygorodov; Samuel A. Lopes; Farukh Mashurov

Communications in Mathematics (2021)

  • Volume: 29, Issue: 2, page 269-279
  • ISSN: 1804-1388

Abstract

top
We connect the theorems of Rentschler [rR68] and Dixmier [jD68] on locally nilpotent derivations and automorphisms of the polynomial ring A 0 and of the Weyl algebra A 1 , both over a field of characteristic zero, by establishing the same type of results for the family of algebras A h = x , y y x - x y = h ( x ) , where h is an arbitrary polynomial in x . In the second part of the paper we consider a field 𝔽 of prime characteristic and study 𝔽 [ t ] comodule algebra structures on A h . We also compute the Makar-Limanov invariant of absolute constants of A h over a field of arbitrary characteristic and show how this subalgebra determines the automorphism group of A h .

How to cite

top

Kaygorodov, Ivan, Lopes, Samuel A., and Mashurov, Farukh. "Actions of the additive group $ {G}_a$ on certain noncommutative deformations of the plane." Communications in Mathematics 29.2 (2021): 269-279. <http://eudml.org/doc/297521>.

@article{Kaygorodov2021,
abstract = {We connect the theorems of Rentschler [rR68] and Dixmier [jD68] on locally nilpotent derivations and automorphisms of the polynomial ring $A _0$ and of the Weyl algebra $A _1$, both over a field of characteristic zero, by establishing the same type of results for the family of algebras \[A \_h=\langle x, y\mid yx-xy=h(x)\rangle \,,\] where $h$ is an arbitrary polynomial in $x$. In the second part of the paper we consider a field $\mathbb \{F\}$ of prime characteristic and study $\mathbb \{F\}[t]$comodule algebra structures on $A _h$. We also compute the Makar-Limanov invariant of absolute constants of $A _h$ over a field of arbitrary characteristic and show how this subalgebra determines the automorphism group of $A _h$.},
author = {Kaygorodov, Ivan, Lopes, Samuel A., Mashurov, Farukh},
journal = {Communications in Mathematics},
keywords = {Derivations; iterative higher derivations; rings of differential operators; Weyl algebra},
language = {eng},
number = {2},
pages = {269-279},
publisher = {University of Ostrava},
title = {Actions of the additive group $ \{G\}_a$ on certain noncommutative deformations of the plane},
url = {http://eudml.org/doc/297521},
volume = {29},
year = {2021},
}

TY - JOUR
AU - Kaygorodov, Ivan
AU - Lopes, Samuel A.
AU - Mashurov, Farukh
TI - Actions of the additive group $ {G}_a$ on certain noncommutative deformations of the plane
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
VL - 29
IS - 2
SP - 269
EP - 279
AB - We connect the theorems of Rentschler [rR68] and Dixmier [jD68] on locally nilpotent derivations and automorphisms of the polynomial ring $A _0$ and of the Weyl algebra $A _1$, both over a field of characteristic zero, by establishing the same type of results for the family of algebras \[A _h=\langle x, y\mid yx-xy=h(x)\rangle \,,\] where $h$ is an arbitrary polynomial in $x$. In the second part of the paper we consider a field $\mathbb {F}$ of prime characteristic and study $\mathbb {F}[t]$comodule algebra structures on $A _h$. We also compute the Makar-Limanov invariant of absolute constants of $A _h$ over a field of arbitrary characteristic and show how this subalgebra determines the automorphism group of $A _h$.
LA - eng
KW - Derivations; iterative higher derivations; rings of differential operators; Weyl algebra
UR - http://eudml.org/doc/297521
ER -

References

top
  1. J. Alev, F. Dumas, 10.1080/00927879708825943, Communications in Algebra, 25, 5, 1997, 1655-1672, Taylor & Francis, (1997) DOI10.1080/00927879708825943
  2. Bavula, V., Jordan, D., 10.1090/S0002-9947-00-02678-7, Transactions of the American Mathematical Society, 353, 2, 2001, 769-794, (2001) DOI10.1090/S0002-9947-00-02678-7
  3. Belov-Kanel, A., Kontsevich, M., 10.17323/1609-4514-2007-7-2-209-218, Moscow Mathematical Journal, 7, 2, 2007, 209-218, (2007) DOI10.17323/1609-4514-2007-7-2-209-218
  4. Benkart, G., Lopes, S.A., Ondrus, M., 10.1090/conm/602/12027, Recent developments in algebraic and combinatorial aspects of representation theory, vol. 602 of Contemporary Mathematics, 2013, 73-98, American Mathematical Society, (2013) DOI10.1090/conm/602/12027
  5. Benkart, G., Lopes, S.A., Ondrus, M., 10.1016/j.jalgebra.2014.11.007, Journal of Algebra, 424, 2015, 46-97, Elsevier, (2015) DOI10.1016/j.jalgebra.2014.11.007
  6. Benkart, G., Lopes, S.A., Ondrus, M., 10.1090/S0002-9947-2014-06144-8, Transactions of the American Mathematical Society, 367, 3, 2015, 1993-2021, (2015) DOI10.1090/S0002-9947-2014-06144-8
  7. Crachiola, A., Makar-Limanov, L., 10.1016/j.jalgebra.2004.09.015, Journal of Algebra, 284, 1, 2005, 1-12, Elsevier, (2005) DOI10.1016/j.jalgebra.2004.09.015
  8. Crachiola, A.J., 10.1090/S0002-9939-05-08171-2, Proceedings of the American Mathematical Society, 134, 5, 2006, 1289-1298, (2006) DOI10.1090/S0002-9939-05-08171-2
  9. Crode, S.D., Shestakov, I.P., 10.1080/00927872.2020.1729363, Communications in Algebra, 48, 7, 2020, 3091-3098, Taylor & Francis, (2020) DOI10.1080/00927872.2020.1729363
  10. Dixmier, J., Sur les algèbres de Weyl, Bulletin de la Société mathématique de France, 96, 1968, 209-242, (1968) 
  11. Dixmier, J., Enveloping algebras, 1996, American Mathematical Society, Vol. 11 of Graduate Studies in Mathematics. Revised reprint of the 1977 translation.. (1996) 
  12. Drensky, V., Makar-Limanov, L., Locally nilpotent derivations of free algebra of rank two, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 15, 2019, Paper No. 091, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, (2019) 
  13. Jung, H.W.E., Über ganze birationale Transformationen der Ebene, Journal für die Reine und Angewandte Mathematik, 1942, 184, 1942, 161-174, De Gruyter, (1942) 
  14. Kaygorodov, I., Shestakov, I., Umirbaev, U., 10.1080/00927872.2017.1358269, Communications in Algebra, 46, 4, 2018, 1799-1812, Taylor & Francis, (2018) DOI10.1080/00927872.2017.1358269
  15. Makar-Limanov, L., 10.1007/BF02937314, Israel Journal of Mathematics, 96, 2, 1996, 419-429, Springer, (1996) DOI10.1007/BF02937314
  16. Makar-Limanov, L., Turusbekova, U., Umirbaev, U., 10.1016/j.jalgebra.2008.01.005, Journal of Algebra, 322, 9, 2009, 3318-3330, Elsevier, (2009) DOI10.1016/j.jalgebra.2008.01.005
  17. Miyanishi, M., 10.1017/S0027763000014094, Nagoya Mathematical Journal, 41, 1971, 97-100, Cambridge University Press, (1971) DOI10.1017/S0027763000014094
  18. Rentschler, R., Opérations du groupe additif sur le plan affine, Comptes rendus de l'Académie des Sciences, Sér. A-B, 267, 1968, 384-387, (1968) 
  19. Restuccia, G., Schneider, H.J., 10.1016/S0021-8693(02)00683-X, Journal of Algebra, 261, 2, 2003, 229-244, Academic Press, (2003) DOI10.1016/S0021-8693(02)00683-X
  20. Restuccia, G., Schneider, H.J., On actions of the additive group on the Weyl algebra, Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali, 83, 1, 2005, 9pp, (2005) 
  21. Tsuchimoto, Y., Endomorphisms of Weyl algebra and p -curvatures, Osaka Journal of Mathematics, 42, 2, 2005, 435-452, Osaka University and Osaka City University, Departments of Mathematics, (2005) 
  22. Essen, A. Van den, Polynomial automorphisms and the Jacobian conjecture, 190, 2000, Birkhäuser, Progress in Mathematics, vol. 190.. (2000) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.